

Institut de Recherche en Communications et Cybernétique de Nantes

1

Workspace and joint space analysis of the 3-RPS parallel robot

D. CHABLAT, R. JHA, F. ROUILLIER, G. MOROZ

Institut de Recherche en Communications et en Cybernétique de Nantes, France INRIA Paris-Rocquencourt Institut de Mathématiques de Jussieu , France INRIA Nancy-Grand Est, France

Problem statement

- There are parallel robots with several operation modes [Zlatanov]
- Can we extend the definitions of the aspects for this kind of robots?
- Can we define the uniqueness domains?
- Can we change assembly mode?
- Application: 3-R<u>P</u>S [Husty]

Outline of the presentation

- Mechanism under study
- Inverse and direct kinematic problem / Operation mode
- Singularities and aspects / Operation mode
- Characteristic surfaces / Operation mode
- Uniqueness domains / Operation mode
- Non-singular assembly mode changing trajectory
- Conclusions

IR CYN

The 3-RPS parallel robot

- Actuators ρ_1, ρ_2, ρ_3
- End-effector $x, y, z, q_1, q_2, q_3, q_4$
- Parameters g = h = 1
- With

 $|| \mathbf{A}_i - \mathbf{B}_i || = \rho_i \quad \text{with} \quad i = 1, 2, 3$

Kinematics

Coordinates of the joints in local and global reference frame

12/16/2014

D. Chablat – IRCCyN - 2014

Kinematics

Six constraint equations

$$\begin{split} || \, \mathbf{A}_i - \mathbf{B}_i \, || &= \rho_i \quad \text{with} \quad i = 1, 2, 3 \\ u_y h + y &= 0 \\ y - u_y h \, / \, 2 + \sqrt{3} v_y h \, / \, 2 + \sqrt{3} x - \sqrt{3} u_x h \, / \, 2 + 3 v_x h \, / \, 2 = 0 \\ y - u_y h \, / \, 2 - \sqrt{3} v_y h \, / \, 2 - \sqrt{3} x + \sqrt{3} u_x h \, / \, 2 + 3 v_x h \, / \, 2 = 0 \end{split}$$

Simplification from 6 to 4 parameters

$$y = -hu_{y}$$

$$x = h\left(\sqrt{3}u_{x} - \sqrt{3}v_{y} - 3u_{y} + 3v_{x}\right)\sqrt{3} / 6$$

12/16/2014

D. Chablat – IRCCyN - 2014

Operation modes

Definition of the orientation matrix by the unit quaternions

$$\mathbf{R} = \begin{vmatrix} 2q_1^{\ 2} + 2q_2^{\ 2} - 1 & -2q_1q_4 + 2q_2q_3 & 2q_1q_3 + 2q_2q_4 \\ 2q_1q_4 + 2q_2q_3 & 2q_1^{\ 2} + 2q_3^{\ 2} - 1 & -2q_1q_2 + 2q_3q_4 \\ -2q_1q_3 + 2q_2q_4 & 2q_1q_2 + 2q_3q_4 & 2q_1^{\ 2} + 2q_4^{\ 2} - 1 \end{vmatrix}$$

with $q_1^2 + q_2^2 + q_3^2 + q_4^2 = 1$

Two operation modes with

$$q_1 = 0 \quad \text{or} \quad q_4 = 0$$

Operation modes

• In the workspace W, for each operation mode, the W_{OMj} is defined such that

$$W_{OM_j} \subset W$$

 $\forall X \in W_{OM_j}, OM \text{ is constant}$

Inverse and direct kinematic problem

$$\begin{split} g_{j}(\mathbf{X}) &= \mathbf{q} \\ g_{j}^{-1}(\mathbf{q}) &= \mathbf{X} \mid (\mathbf{X},\mathbf{q}) \in OM^{j} \end{split}$$

• In our case: $OM^1: q_1 = 0$ or $OM^2: q_4 = 0$

12/16/2014

D. Chablat - IRCCyN - 2014

Algebraic tools

- SIROPA library (ANR SIROPA, J-P. Merlet, P. Wenger)
- - Computation of the singularities and characteristic surfaces
- Cylindrical Algebraic Decomposition (CAD)
 - Representation of the aspects and basic regions

IR CYN

Singularities

 Differentiating with respect to time the constraint equations leads to the velocity model:

$$\mathbf{A} \mathbf{t} + \mathbf{B} \mathbf{q} = \mathbf{0}$$

$$\begin{split} S_{_{OM^1}}: & q_4(8q_2q_3^2q_4^6+2q_2q_4^8-64zq_3^6q_4-96zq_3^4q_4^3-36zq_3^2q_4^5-6zq_4^7\\ & -24z^2q_2q_3^2q_4^2-6z^2q_2q_4^4-32q_2q_3^2q_4^4-10q_2q_4^6+2z^3q_4^3+96zq_3^4q_4\\ & +72zq_3^2q_4^3+23zq_4^5+16z^2q_2q_3^2+10z^2q_2q_4^2+8q_2q_4^4-z^3q_4-36zq_3^2q_4\\ & -21zq_4^3-4z^2q_2+4zq_4)=0 \end{split}$$

$$\begin{split} S_{_{OM^2}} &: q_1^2 (6q_1^7q_3 + 8q_1^5q_3^3 - 2zq_1^6 + 36zq_1^4q_3^2 + 96zq_1^2q_3^4 + 64zq_3^6 \\ &- 18z^2q_1^3q_3 - 24z^2q_1q_3^3 - 18q_1^5q_3 - 16q_1^3q_3^3 + 2z^3q_1^2 + 3zq_1^4 - 72zq_1^2q_3^2 \\ &- 96zq_3^4 + 18z^2q_1q_3 + 12q_1^3q_3 - z^3 + 3zq_1^2 + 36zq_3^2 - 4z) = 0 \end{split}$$

12/16/2014

D. Chablat – IRCCyN - 2014

Singularities

• For z = 3 and $q_4 > 0$ or $q_1 > 0$

Aspect for an operation mode

- Definition for « classical » parallel robot, an aspect WA_i is a maximal singularity free set defined such that
 - $W\!A_{_i} \subset W$
 - WA_i is connected
 - $\forall X \in WA_i, \det(\mathbf{A}) \neq 0 \text{ and } \det(\mathbf{B}) \neq 0$
- For a given operation mode *j*, an aspect WA_i^j is a maximal singularity free set defined such that

 $WA_i^{\ j} \subset W_{OM_j}$ $WA_i^{\ j} \text{ is connected}$ $\forall X \in WA_i^{\ j}, \det(\mathbf{A}) \neq 0 \text{ and } \det(\mathbf{B}) \neq 0$

Aspects for an operation mode

• Four aspects, two for each operation mode

12/16/2014

D. Chablat – IRCCyN - 2014

Direct kinematics

D. Chablat – IRCCyN - 2014

Characteristic surfaces for an operation mode

- Let WA_i^j be one aspect for the operation mode *j*.
- The characteristic surfaces, denoted by $S_C^{j}(WA_i^{j})$

12/16/2014

Basic regions/Basic components for an operation mode

Basic regions for an operation mode

$$\cup WAb_i^j = WA_i^j - S_C^j$$

Basic components for an operation mode

$$QA_i^j = g_j \left(WA \, b_i^j \right)$$

for an operation mode

• For a given operation mode j, a uniqueness domain Wu_k^l

$$Wu_k^j = \left(\bigcup_{i \in I'} WAb_i^j\right) \cup S_C^j(I')$$

Uniqueness domains

• Slice of the workspace for z = 3

Uniqueness domains for $OM^1 \det(A) > 0$

$$\begin{split} Wu_1^1 &= WA_1^1 \cup WA_2^1 \cup WA_3^1 \cup WA_4^1 \\ Wu_2^1 &= WA_1^1 \cup WA_2^1 \cup WA_3^1 \cup WA_5^1 \\ Wu_3^1 &= WA_1^1 \cup WA_2^1 \cup WA_3^1 \cup WA_6^1 \end{split}$$

D. Chablat – IRCCyN - 2014

Uniqueness domains for $OM^1 \det(A) < 0$

$$\begin{split} Wu_4^1 &= WA_7^1 \cup WA_{11}^1 \cup WA_{12}^1 \cup WA_{12}^1 \\ Wu_5^1 &= WA_8^1 \cup WA_{11}^1 \cup WA_{12}^1 \cup WA_{12}^1 \\ Wu_6^1 &= WA_9^1 \cup WA_{11}^1 \cup WA_{12}^1 \cup WA_{12}^1 \\ Wu_7^1 &= WA_{10}^1 \cup WA_{11}^1 \cup WA_{12}^1 \cup WA_{12}^1 \\ \end{split}$$

D. Chablat – IRCCyN - 2014

Uniqueness domains for OM^2

Non-singular assembly *in Curr* mode changing trajectories

- Can I connect three configurations?
- When the robot is changing assembly mode?
- Example:

OM_1					OM_2					
$\rho_1 = 3.90, \ \rho_2 = 3.24, \ \rho_3 = 3.24$						$\rho_1 = 3.79, \rho_2 = 3.24, \rho_3 = 3.24$				
P	z	q_2	q_3	q_4	P	z	q_1	q_2	q_3	
P_1	3.01	-0.34	-0.94	0.06	P_5	3.04	0.35	-0.58	-0.74	
P_2	3.01	-0.34	0.94	0.06	P_6	3.04	0.35	0.586	-0.74	
P_3	3	0.85	0.0	0.53	P_7	3	0.24	0.0	0.97	
P_4	-2.88	-0.35	0.0	0.93	P_8	-3.42	0.98	0.0	0.19	

12/16/2014

D. Chablat - IRCCyN - 2014

Non-singular assembly mode changing trajectories

• Two trajectories $P_1P_2P_3$ and $P_5P_6P_7$ for z=3

D. Chablat – IRCCyN - 2014

Non-singular assembly mode changing trajectories

Images in the joint space

Non-singular assembly *incom* mode changing trajectories

Images in the joint space

Conclusions

- A study of the joint space and workspace of the 3-RPS parallel robot
- Two non-singular assembly mode changing trajectories are made.
- The two operation modes are divided into two aspects
- This mechanism admits a maximum of 16 real solutions to the direct kinematic problem, eight for each operation mode.
- The basic regions for each operation mode are defined.
- The uniqueness domains for each operation mode are defined.
- A path is defined through several basic regions which are images of the same basic component with 8 solutions for the DKP.
- The proof is made by the analysis of the determinant of Jacobian.

Thank you for your attention

Damien.Chablat@cnrs.fr

www.irccyn.ec-nantes.fr/~chablat