Regular Model Checking Revisited

Anthony W. Lin

(TU Kaiserslautern and Max-Planck Institute for Software Systems, Germany) [Joint with Philipp Rümmer]

SynCoP'22, Munich

Acknowledgment

Outline of the talk

- RMC background and some history
- Reformulation of RMC in terms regular synthesis problem
- Brief overview of automata learning for regular synthesis

Parameterized Systems

Definition: An infinite family of finite-state systems

 $\mathscr{F} := \{ \text{Distributed Protocol with } n \text{ finite processes} : n \in \mathbb{N} \}$

Plethora of examples from distributed computing, e.g., Dining Philosopher protocol, Bakery Protocol, etc.

Undecidability for simple safety properties (Apt & Kozen'86)

Lots of work on parameterized systems dating back to 1990s by Emerson, Pnueli, and others

Regular Model Checking

A symbolic framework for verifying parameterized systems

Symbolic model checking with rich assertional langua Y Resten, <u>O Maler</u>, M Marcus, A Pnueli... - ... Conference on Computer ... In this section we demonstrate the use of the class of regular language languages. As a running example, we ... Going back to the use of FSAs language, we observe that if A is an automaton characterizing a set of s ★ Save 55 Cite Cited by 208 Related articles All 20 versions

Regular model checking

<u>A Bouajjani, B Jonsson, M Nilsson, T Touili</u> - International Conference on ..., 2000 - Spring ... We present **regular model checking**, a framework for algorithmic verification of infinitesystems with, ... States are represented by strings over a finite alphabet and the transition relation by a **regular** length-... We introduce the program **model** used in **regular model c *** Save 55 Cite Cited by 369 Related articles All 24 versions

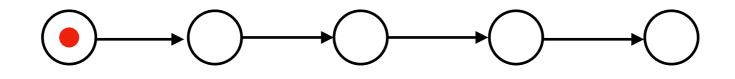
Verifying systems with infinite but regular state spaces

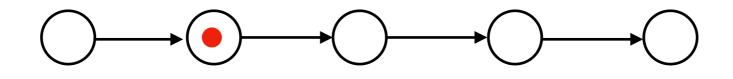
<u>P Wolper, B Boigelot</u> - ... Conference on Computer Aided Verification, 1998 - Springer ... to consider a larger class of **systems**, **but** to be satisfied with a ... of closed **systems** wh infinite state space originates from the ... The focus on closed **systems** is typical of many ★ Save 55 Cite Cited by 193 Related articles All 14 versions Web of Science: 65

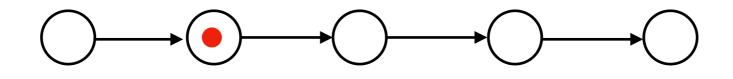
<u>Crux</u>:

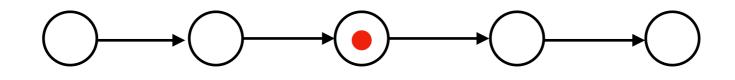
- 1. Model configuration as a string
- 2. Represent an infinite set of strings using regular languages
- 3. Model transition relation by a **length-preserving transducer** R

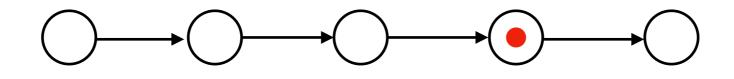
other notions of transducers (e.g. over trees, ω -words) are possible, but we restrict to this for simplicity

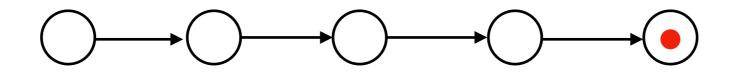








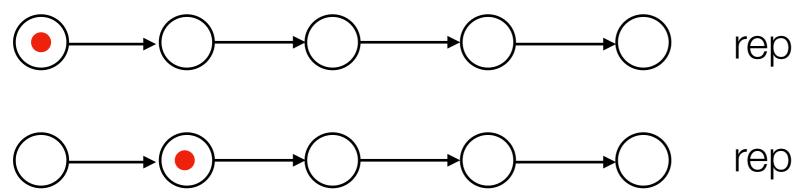




t = 6

<u>Safety</u>: prove that the token never disappears <u>Liveness</u>: prove that the token always reaches the last process (under some fairness assumption)

Model in RMC



represented as 10000

represented as 01000

The set *Init* of <u>initial configurations</u> is a regular language: $Init = 10^*$

The set Bad of <u>bad configurations</u> is a regular language:

 $Init = 0^*$

The transition relation (over strings) can be represented as transducer:

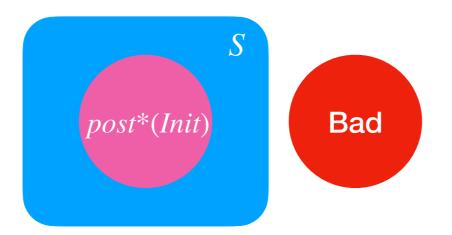
$$R := \underbrace{0/0}_{1/0} \underbrace{0/1}_{0/1} \underbrace{0/1}_{0/1}$$

Computing Closures

Reachability Set

Compute a regular language representing $post_R^*(Init)$ or its overapproximation

Useful for safety: $S \supseteq post_R^*(Init) \land S \cap Bad = \emptyset \longrightarrow$ safe



For our simple token-passing example:

Init =
$$10^*$$
 So: $post^*(Init) = 0^*10^*$

 Bad = 0^*
 We could also take $S = (0 + 1)^*1(0 + 1)^*$

Problem and Solutions

Problem with computing closures:

- 1. Non-regularity
- 2. Non-termination
- 3. Regular but extremely large states

General solutions:

- 1. Acceleration (Abdulla, Jonsson, Nilsson, Orso; Boigelot et al.)
- 2. Widening (Bouajjani and Touili; Boigelot, Legay, and Wolper; Yu, Alkhalaf, Bultan, and Ibarra)
- 3. Abstraction (Bouajjani, Habermehl, Vojnar)
- Automata learning (pre 2010: Vardhan et al.; Habermehl and Vojnar)
 (post 2010: Neider and Jansen; Chen, Hong, Lengal, L., Majumdar, Markgraf, Neider, Rümmer, Stan)

RMC Beyond Safety

So far, only automata learning enjoys some success:

Liveness of Randomized Distributed Protocols (L. & Rümmer, Lengal, L., Majumdar, and Rümmer)

Solving <u>Safety Games</u> (Neider and Topcu; Markgraf, Hong, L., Najib and Neider)

Probabilistic Bisimulation and Anonymity Protocols (Hong, L., Majumdar, Rümmer)

Knowledge Reasoning in Multi-Agent Systems (Stan and L.)

Symmetry Detection in RMC (L., Nguyen, Rümmer, and Sun)

RMC as a Regular Synthesis Problem

Deductive Verification

Commonly used in program verification (among others)

Prove "error" is never printed

Safety as "Invariant checking" in some decidable theory:

 $\operatorname{Init}(x) := x = 0$ $\operatorname{Bad}(x) := x \equiv_2 1$

Want to synthesize formula Inv(x) s.t.

 $\forall x(\operatorname{Init}(x) \to \operatorname{Inv}(x))$ $\forall x(\operatorname{Inv}(x) \to \neg \operatorname{Bad}(x))$ $\forall x(\operatorname{Inv}(x) \to \operatorname{Inv}(x+2))$

Satisfied by $Inv(x) := x \equiv_2 0$

Proposition: Given Presburger Inv, invariant checking is decidable

Decidable Theory for RMC

Which decidable theory of regular languages and transducers is suitable for deductive verification in RMC?

Our answer: <u>universal automatic structure</u> (Blumensath&Grädel'00)

$$\mathfrak{S}_{u} = \langle \Sigma^{*} : \leq , eql, \{L\}_{L \in REG} \rangle$$

Domain is the set of all words over Σ

 \leq is the prefix-of relation: $v \leq w$ iff v is a prefix of w

eql is the equal-length relation: eql(v, w) iff |v| = |w|

L is any regular language: L(x) iff $x \in L$

Theorem (BG'00): FO theory over \mathfrak{S}_u is decidable

 $r\text{-}\mathrm{ary}$ relation over Σ^* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over the alphabet $(\Sigma_{\perp})^r$ where $\Sigma_{\perp} := \Sigma \cup \{ \perp \}$

How A defines a relation?

given a tuple $\bar{v} = (w_1, ..., w_r)$, write it down as a matrix $M_{\bar{v}}$ with each w_i being the *i*th row (pad shorter string with \bot) Example:

$$\bar{v} := (aaa, cb, a) \qquad \qquad M_{\bar{v}} := \begin{pmatrix} a & a & a \\ b & c & \bot \\ a & \bot & \bot \end{pmatrix}$$

r-ary relation over Σ^* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over the alphabet $(\Sigma_{\perp})^r$ where $\Sigma_{\perp} := \Sigma \cup \{ \perp \}$

How A defines a relation?

Run A on $M_{\overline{v}}$ column-by-column

$$\bar{v} := (aaa, cb, a) \qquad M_{\bar{v}} := \begin{pmatrix} a & a & a \\ b & c & \bot \\ a & \bot & \bot \end{pmatrix}$$

$$A$$

r-ary relation over Σ^* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over the alphabet $(\Sigma_{\perp})^r$ where $\Sigma_{\perp} := \Sigma \cup \{ \perp \}$

How A defines a relation?

Run A on $M_{\overline{v}}$ column-by-column

$$\bar{v} := (aaa, cb, a) \qquad M_{\bar{v}} := \begin{pmatrix} a & a & a \\ b & c & \bot \\ a & \bot & \bot \end{pmatrix}$$

$$A$$

 $r\text{-}\mathrm{ary}$ relation over Σ^* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over the alphabet $(\Sigma_{\perp})^r$ where $\Sigma_{\perp}:=\Sigma\cup\{\perp\}$

How A defines a relation?

Run A on $M_{\overline{v}}$ column-by-column

$$\bar{v} := (aaa, cb, a) \qquad M_{\bar{v}} := \begin{pmatrix} a & a & a \\ b & c & 1 \\ a & 1 & 1 \end{pmatrix}$$

Define: $Rel(A) := \{ \overline{v} : M_{\overline{v}} \in L(A) \}$

Regular Relations in \mathfrak{S}_{u}

A relation $R \subseteq (\Sigma^*)^r$ is **definable** in \mathfrak{S}_u iff there is an FO formula $\varphi(x_1, \ldots, x_r)$ s.t.

$$R = \{(w_1, \dots, w_r) : \mathfrak{S}_u \models \varphi(w_1, \dots, w_r)\}$$

Theorem (BG'00): Regular relations coincide precisely with relations definable in \mathfrak{S}_u

RMC as a Regular Synthesis Problem

Existential Second-Order (ESO) formulas over \mathfrak{S}_{u}

$$\Phi := \exists R_1, \dots, R_n \varphi$$

where

(1) R_i is a second-order variable of arity r_i

(2) φ is an FO formula over $\mathfrak{S}_u \cup \{R_1, \dots, R_n\}$

ESO model checking over \mathfrak{S}_{u} :

given an ESO formula Φ over \mathfrak{S}_u , decide if $\mathfrak{S}_u \models \Phi$

Regular Synthesis for RMC:

given an ESO formula Φ over \mathfrak{S}_u , decide if there exist r_i -ary regular relations R_i such that $\mathfrak{S}_u \models \varphi$

Empirically: Regular proofs suffice in practice

Safety as Regular Synthesis

Inputs: (1) regular languages Init, Bad, (2) length-preserving regular relation R

Verification Condition:

Our simple token-passing example:

Init = 10^* Can take $Inv_1 = 0^*10^*$ Bad = 0^* or $Inv_2 = (0 + 1)^*1(0 + 1)^*$

Termination as Regular Synthesis

Termination: no infinite runs exist

Inputs: (1) regular languages *Init*,

(2) length-preserving regular relation R

Verification Condition:

- $\exists Inv \subseteq \Sigma^*, Rank \subseteq \Sigma^* \times \Sigma^*:$
- (1) *Init* \subseteq *Inv*,
- (2) *Inv* is inductive
- (3) *Rank* covers reachable transitions: $R \cap (Inv \times Inv) \subseteq Rank$
- (4) *Rank* is transitive and irreflexive

Verification Condition: $\exists Inv \subseteq \Sigma^*, Rank \subseteq \Sigma^* \times \Sigma^*$:(1) Init $\subseteq Inv$,(2) Inv is inductive(3) Rank covers reachable transitions: $R \cap Inv \times Inv \subseteq Rank$ (4) Rank is transitive and irreflexive

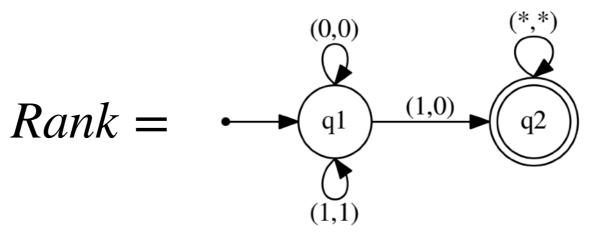
Consider a length-preserving regular relation over $\Sigma=\{0,1\}$ that nondeterministically rewrites 10 to 01

 $1010 \rightarrow 0110 \rightarrow 0101 \rightarrow 0011$

$Init = 0\Sigma^*1$

 $Inv = \Sigma^*$

 $R := ((0,0) + (1,1))^* (1,0)(0,1)((0,0) + (1,1))^*$



Lexicographic order

Reachability Games as Regular Synthesis

Inputs: (1) regular languages Init, F

(2) length-preserving regular relations R_1, R_2 with

 $post^*_{R_i}(\Sigma^*) \cap pre^*_{R_i}(\Sigma^*) = \emptyset$ [i.e. strictly alternating.]

Goal: Player 2 (resp. 1) tries to reach (resp. avoid) F from Init

Verification Condition:

 $\exists Inv \subseteq \Sigma^*, Rank \subseteq \Sigma^* \times \Sigma^*$:

(1) $Init \subseteq Inv$, (2) Rank is transitive and irreflexive

(3) Player 0 can force the game to progress according to Rank

$$s \in Inv \setminus F \xrightarrow{\forall}_{1} s' \notin F$$

$$Rank \xrightarrow{2}{s''} \in Inv$$

Example: Take-Away Game

There are n coins on the table

At each turn, a player can take 1,2, or 3 coins

Player who is to move when no coins are left loses

Initially, Player 1 moves

The game strictly alternates

Example: Take-Away Game

Regular modelling:

$$Dom = (p_1 + p_2)1*0*$$

e.g. $p_1 111000$ represents Player 1's turn on

Say we want to prove that, starting with 4k coins, Player 2 has a winning strategy

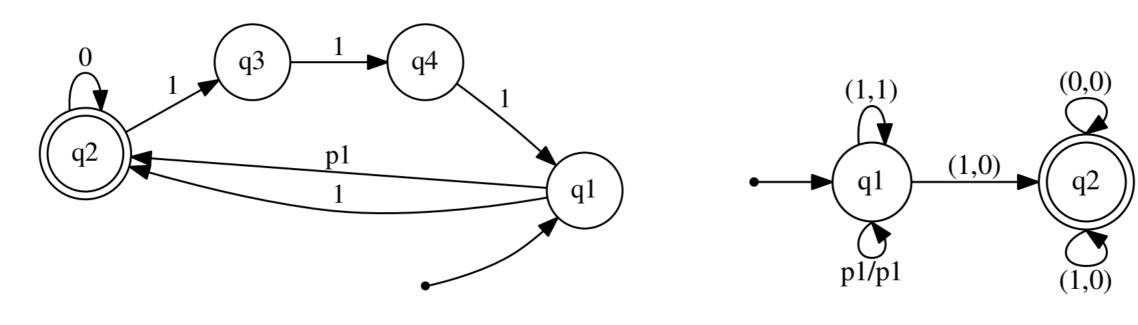
Init =
$$p_1(1111)*0*$$

$$F = p_1 0^*$$

Transitions:

 $R_1 = (p_1, p_2)(1, 1)^*((1, 0) + (11, 00) + (111, 000))(0, 0)^*$ $R_2 = (p_2, p_1)(1, 1)^*((1, 0) + (11, 00) + (111, 000))(0, 0)^*$

Regular Proofs



Inv

Rank

Liveness of Randomized Parameterized Systems

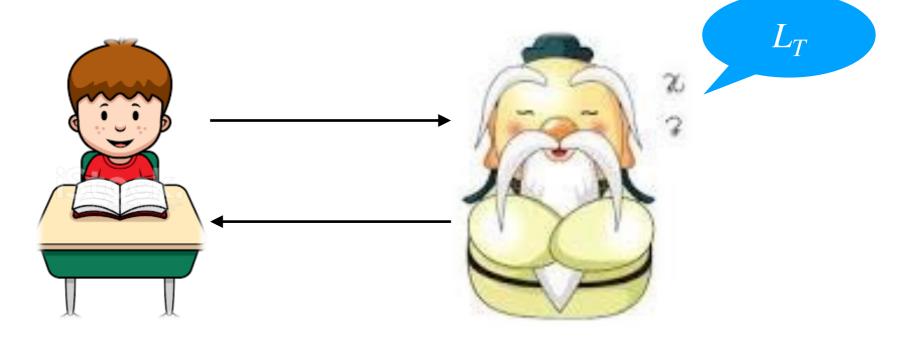
Similar regular encoding as in 2-player reachability games is possible

Lots of examples:

- 1. Lehmann-Rabin dining philosopher protocol
- 2. Israeli-Jalfon self-stabilizing protocol
- 3. Herman self-stabilizing protocol
- 4. ...

Regular synthesis algorithms via automata learning: Brief Overview

The Gist of Automata Learning (a la Angluin)



Learner tries to learn L_T from Teacher

Typical queries:

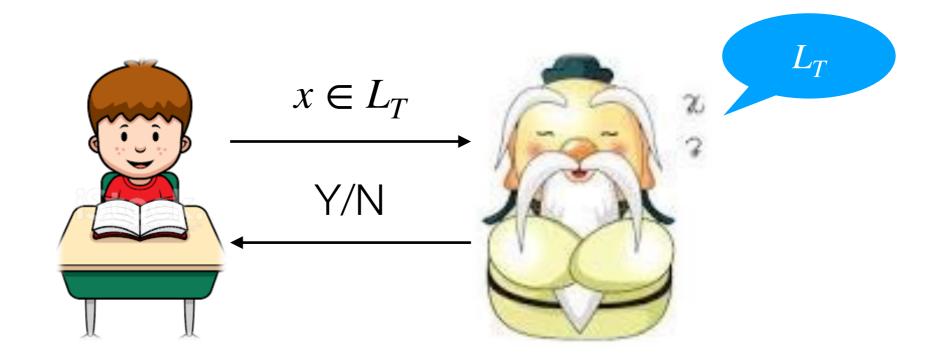
(ME) Membership query: $x \in L_T$

(EQ) Equivalence query: $L = L_T$

Two common variations in RMC:

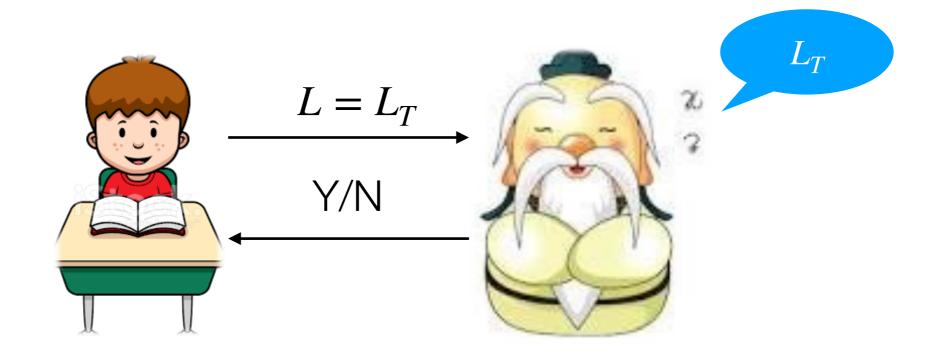
- 1. EQ only
- 2. ME+EQ

Membership



Learner tries to learn L_T from Teacher

Equivalence



Learner tries to learn L_T from Teacher

Counterexample: $w \in (L_T \setminus L) \cup (L \setminus L_T)$

Theorem (Angluin): there is a polynomial-time algorithm for inferring an unknown DFA from a teacher with ME+EQ

Problem with Membership

In general, difficult to implement a teacher for membership

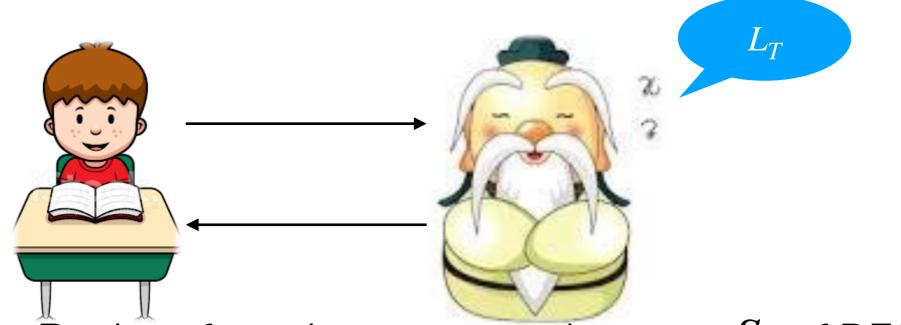
Example: to learn a $post_R^*(Init)$, checking whether $w \in post_R^*(Init)$ is typically undecidable

In restricted cases, solutions are available (we will see later)

In general case, it seems a good idea to dispense with memberships

Automata Learning with Equivalence (and SAT-solver)

(Heule and Verwer'10)



Learner: keeps a Boolean formula ϕ representing a set S_{ϕ} of DFAs

with *n* states (*n* is incremented as needed) <u>Main loop</u>:

- 1. Learner guesses $A_{\varphi} \in S_{\varphi}$ [using SAT-solver]
- 2. If $L(A_{\varphi}) \neq L_T$ with cex $w \in \Sigma^*$, incorporate w into φ as a "blocking clause" and goto (1)

Non-Uniqueness of Target Automata

Safety: $\exists Inv(Init \subseteq Inv \land Inv \cap Bad = \emptyset \land post_R(Inv) \subseteq Inv)$ (3)
(3)

Inv is not unique in general!

Solution: Teacher returns a boolean formula as a blocking clause

For L_T violating (1)-(2), teacher can reply a +/- cex For L_T violating (3), teacher replies an implication cex $v \in L_T \rightarrow w \in L_T$

Sometimes Membership can be implemented

<u>Membership query:</u> $x \in L_T$

Using finite-state model checker to check if

 $\{y \in \text{Init} : |y| = |x|\} \rightarrow^* x$

Possible because of

length-preserving assumption

Empirical observation:

when learning with ME+EQ can be applied, it's faster than SAT-based learning

Experimental Results

The safety property									Learning			SAT			T(O)RMC		
Name	#L	S _{init}	T _{init}	S _{tran}	T _{tran}	S _{bad}	T _{bad}	Time	Sinv	T _{inv}	Time	Sinv	T _{inv}	Time	Sinv	T _{inv}	Time
Bakery	3	3	3	5	19	3	9	0.0s	6	18	0.5s	2	5	0.0s	6	11	0.0s
Burns	12	3	3	10	125	3	36	0.2s	8	96	1.1s	2	10	0.1s	7	38	0.6s
Szymanski	11	9	9	123	469	13	40	0.6s	48	528	t.o.	-	_	0.9s	51	102	t.o.
German	581	3	3	17	9.5k	4	2112	4.8s	14	8134	t.o.	_	_	t.o.	_	_	2.3s
Dijkstra, linear	42	1	1	13	827	3	126	0.1s	9	378	1.7s	2	24	6.1s	8	83	t.o.
Dijkstra, ring	12	3	3	13	199	3	36	1.4s	22	264	0.9s	2	14	t.o.	_	_	t.o.
Dining Crypt.	14	10	30	17	70	12	70	0.1s	32	448	t.o.	_	_	0.2s	37	164	1.3s
Coffee Can	6	8	18	13	34	5	8	0.0s	3	18	0.2s	2	7	0.1s	6	13	0.0s
Herman, linear	2	2	4	4	10	1	1	0.0s	2	4	0.2s	2	4	0.0s	2	4	0.0s
Herman, ring	2	2	4	9	22	1	1	0.0s	2	4	0.4s	2	4	0.0s	2	4	0.0s
Israeli-Jalfon	2	3	6	24	62	1	1	0.0s	4	8	0.1s	2	4	0.0s	4	8	0.0s
Lehmann-Rabin	6	4	4	14	96	3	13	0.1s	8	48	0.5s	2	11	0.8s	19	105	0.0s
LR Dining Phil.	4	4	4	3	10	3	4	0.0s	4	16	0.2s	2	6	0.1s	7	18	0.0s
Mux Array	6	3	3	4	31	3	18	0.0s	5	30	0.4s	2	7	0.2s	4	14	0.1s
Res. Allocator	3	3	3	7	25	4	11	0.0s	5	15	0.0s	3	7	0.0s	4	9	0.0s
Kanban	3	25	48	98	250	37	68	t.o.	_	_	t.o.	_	_	t.o.	_	_	t.o.
Water Jugs	11	5	6	23	132	5	12	0.1s	24	264	t.o.	_	_	t.o.	_	_	t.o.

Conclusion

Summary

- RMC can be in general formulated as a regular synthesis problem
- Future work:

(1) more general and faster synthesis algorithm for regular synthesis

(2) Extension to non-length-preserving RMC and ω -RMC (proof rules are more complicated requiring Ramsey quantifiers)

ANNEX

Strict but Generous Teacher (FMCAD'17)

Since there could be multiple Inv, we implement a teacher that is:

1. <u>strict</u>: provides hints consistent with minimal invariant $L_T = post^*$ (Init) 2. <u>generous</u>: accepts *any* invariant

How to answer membership query $x \in L_T$ $x \in L_T$ IFF $\{y \in \text{Init} : |y| = |x|\} \rightarrow x$ use finite-state model checker

How to answer equivalence query $L = L_T$ Init $\subseteq L \land L \cap Bad = \emptyset \land R(L) \subseteq L$ use automata algorithm

Counterexample for $R(L) \subseteq L$

• is NOT reachable (or • \in Bad) => remove • from L

• is reachable ==> add • to L