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Outline of the talk

• RMC background and some history


• Reformulation of RMC in terms regular synthesis problem


• Brief overview of automata learning for regular synthesis



Parameterized Systems
Definition: An infinite family of finite-state systems

ℱ := {Distributed Protocol with n finite processes : n ∈ ℕ}

Plethora of examples from distributed computing, e.g., Dining 
Philosopher protocol, Bakery Protocol, etc.

Undecidability for simple safety properties (Apt & Kozen’86)

Lots of work on parameterized systems dating back to 1990s

by Emerson, Pnueli, and others



Regular Model Checking

Crux:

1. Model configuration as a string 

2. Represent an infinite set of strings using regular languages

3. Model transition relation by a length-preserving transducer R

A symbolic framework for verifying parameterized systems

other notions of transducers (e.g. over trees, -words) are

possible, but we restrict to this for simplicity

ω
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Token Passing Protocol
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Token Passing Protocol

t = 6

Safety: prove that the token never disappears
Liveness: prove that the token always reaches the last

process (under some fairness assumption)



Model in RMC
represented as 10000

represented as 01000

0/0
1/0 0/1

0/0

R :=

The transition relation (over strings) can be represented as transducer:

The set  of initial configurations is a regular language:Init
Init = 10*

The set  of bad configurations is a regular language:Bad
Init = 0*



Computing Closures



Reachability Set
Compute a regular language representing  or its 
overapproximation

post*R (Init)

Useful for safety: S ⊇ post*R (Init) ∧ S ∩ Bad = ∅ ⟶ safe

Badpost*(Init)

S

For our simple token-passing example:
Init = 10*
Bad = 0*

So: post*(Init) = 0*10*
We could also take S = (0 + 1)*1(0 + 1)*



Problem and Solutions
Problem with computing closures:

1. Non-regularity

2. Non-termination

3. Regular but extremely large states

General solutions:

1. Acceleration (Abdulla, Jonsson, Nilsson, Orso; Boigelot et al.)

2. Widening (Bouajjani and Touili; Boigelot, Legay, and Wolper; Yu, Alkhalaf, 

Bultan, and Ibarra)

3. Abstraction (Bouajjani, Habermehl, Vojnar)

4. Automata learning  

(pre 2010: Vardhan et al.; Habermehl and Vojnar) 
(post 2010: Neider and Jansen; Chen, Hong, Lengal, L., Majumdar, 
Markgraf, Neider, Rümmer, Stan)

inspired our new 
framework



RMC Beyond Safety
So far, only automata learning enjoys some success:

Liveness of Randomized Distributed Protocols (L. & Rümmer, Lengal, 
L., Majumdar, and Rümmer)

Solving Safety Games (Neider and Topcu; Markgraf, Hong, L., Najib

and Neider)

Probabilistic Bisimulation and Anonymity Protocols (Hong, L.,

Majumdar, Rümmer)

Knowledge Reasoning in Multi-Agent Systems (Stan and L.)

Symmetry Detection in RMC (L., Nguyen, Rümmer, and Sun)



RMC as a Regular 
Synthesis Problem



Deductive Verification
Commonly used in program verification (among others)

x = 0

while true:

    x = x + 2

    if x % 2 == 1:

        print “error”

Prove “error” is never printed

Satisfied by Inv(x) := x ≡2 0

Init(x) := x = 0 Bad(x) := x ≡2 1

Want to synthesize formula  s.t.Inv(x)
∀x(Init(x) → Inv(x))
∀x(Inv(x) → ¬Bad(x))
∀x(Inv(x) → Inv(x + 2))

Safety as “Invariant checking” in some decidable theory:

Proposition: Given Presburger Inv, invariant checking is decidable



Decidable Theory for RMC
Which decidable theory of regular languages and transducers

is suitable for deductive verification in RMC?

Our answer: universal automatic structure (Blumensath&Grädel’00)

𝔖u = ⟨Σ* :⪯ , eql, {L}L∈REG⟩
Domain is the set of all words over Σ

 is the prefix-of relation:  iff  is a prefix of ⪯ v ⪯ w v w
 is the equal-length relation:  iff eql eql(v, w) |v | = |w |

 is any regular language:  iff L L(x) x ∈ L

Theorem (BG’00): FO theory over  is decidable𝔖u



Regular relations
-ary relation over  definable by a synchronous automaton r Σ* A

A synchronous automaton is simply an automaton over 

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }

How  defines a relation?A
given a tuple , write it down as a matrix 

with each  being the th row (pad shorter string with )

v̄ = (w1, …, wr) Mv̄
wi i ⊥

Example:
v̄ := (aaa, cb, a) Mv̄ := (

a a a
b c ⊥
a ⊥ ⊥ )
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Regular relations
-ary relation over  definable by a synchronous automaton r Σ* A

How  defines a relation?A

Run  on  column-by-columnA Mv̄

v̄ := (aaa, cb, a) Mv̄ := (
a a a
b c ⊥
a ⊥ ⊥ )

A
Define: Rel(A) := {v̄ : Mv̄ ∈ L(A)}

A synchronous automaton is simply an automaton over 

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }



Regular Relations in 𝔖u

Theorem (BG’00): Regular relations coincide precisely with 
relations definable in 𝔖u

A relation  is definable in  iff there is an FO formula

 s.t.

R ⊆ (Σ*)r 𝔖u
φ(x1, …, xr)

R = {(w1, …, wr) : 𝔖u ⊧ φ(w1, …, wr)}



RMC as a Regular 
Synthesis Problem

ESO model checking over : 
given an ESO formula  over , decide if 

𝔖u
Φ 𝔖u 𝔖u ⊧ Φ

Existential Second-Order (ESO) formulas over 𝔖u
Φ := ∃R1, …, Rnφwhere 

(1)  is a second-order variable of arity 

(2)  is an FO formula over 

Ri ri
φ 𝔖u ∪ {R1, …, Rn}

Regular Synthesis for RMC: 
given an ESO formula  over , decide if there exist -ary

regular relations  such that 

Φ 𝔖u ri
Ri 𝔖u ⊧ φ

Empirically: Regular proofs suffice in practice



Safety as Regular Synthesis
Inputs: (1) regular languages ,

             (2) length-preserving regular relation 

Init, Bad
R

Verification Condition:

             ∃Inv(Init ⊆ Inv ∧ Inv ∩ Bad = ∅ ∧ postR(Inv) ⊆ Inv)

∀x(Init(x) → Inv(x))
∀x(Inv(x) → ¬Bad(x))

∀x, y(Inv(x) ∧ R(x, y) → Inv(y))

Our simple token-passing example:
Init = 10*
Bad = 0*

Can take Inv1 = 0*10*
or Inv2 = (0 + 1)*1(0 + 1)*



Termination as Regular 
Synthesis

Inputs: (1) regular languages ,

             (2) length-preserving regular relation 

Init
R

Verification Condition: 

, : 

(1) ,

(2)  is inductive

(3)  covers reachable transitions: 

(4)  is transitive and irreflexive

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv
Inv
Rank R ∩ (Inv × Inv) ⊆ Rank
Rank

Termination: no infinite runs exist



Example
Verification Condition: 


, : 
(1) ,

(2)  is inductive

(3)  covers reachable transitions: 

(4)  is transitive and irreflexive

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv
Inv
Rank R ∩ Inv × Inv ⊆ Rank
Rank

Consider a length-preserving regular relation over 

that nondeterministically rewrites 10 to 01

Σ = {0,1}

 1010 → 0110 → 0101 → 0011

Init = 0Σ*1
R := ((0,0) + (1,1))*(1,0)(0,1)((0,0) + (1,1))*

Inv = Σ* Rank =

Lexicographic order



Reachability Games as 
Regular Synthesis

Inputs: (1) regular languages , 

             (2) length-preserving regular relations  with

                   [i.e. strictly alternating.]

Init F
R1, R2

post*Ri
(Σ*) ∩ pre*Ri

(Σ*) = ∅

Verification Condition: 

, : 

(1) ,                  (2)  is transitive and irreflexive

(3) Player 0 can force the game to progress according to 

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv Rank

Rank

Goal: Player 2 (resp. 1) tries to reach (resp. avoid)  from  F Init

s ∈ Inv∖F s′￼∉ F1
∀

s′￼′￼∈ Inv
∃

2
Rank



Example: Take-Away Game
There are  coins on the tablen

At each turn, a player can take 1,2, or 3 coins

Player who is to move when no coins are left loses

Initially, Player 1 moves

The game strictly alternates



Example: Take-Away Game
Dom = (p1 + p2)1*0*

Regular modelling:

e.g.  represents Player 1’s turn onp1111000

Say we want to prove that, starting with  coins, Player 2

has a winning strategy

4k

F = p10*

Init = p1(1111)*0*

Transitions:
R1 = (p1, p2)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*
R2 = (p2, p1)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*



Regular Proofs

Inv Rank



Liveness of Randomized 
Parameterized Systems

Similar regular encoding as in 2-player reachability games is

possible

Lots of examples:

1. Lehmann-Rabin dining philosopher protocol

2. Israeli-Jalfon self-stabilizing protocol

3. Herman self-stabilizing protocol

4. …



Regular synthesis 
algorithms via automata 
learning: Brief Overview



The Gist of Automata 
Learning (a la Angluin)

LT

Learner tries to learn  from TeacherLT

(ME) Membership query: x ∈ LT

(EQ) Equivalence query: L = LT

Typical queries: Two common variations

in RMC:

1. EQ only

2. ME+EQ



Membership
LT

Learner tries to learn  from TeacherLT

x ∈ LT

Y/N



Equivalence
LT

Learner tries to learn  from TeacherLT

Y/N

L = LT

Counterexample: w ∈ (LT∖L) ∪ (L∖LT)
Theorem (Angluin): there is a polynomial-time algorithm for

inferring an unknown DFA from a teacher with ME+EQ



Problem with Membership
In general, difficult to implement a teacher for membership

Example: to learn a , checking

whether  is typically undecidable

post*R (Init)
w ∈ post*R (Init)

In restricted cases, solutions are available (we will see later)

In general case, it seems a good idea to dispense with memberships



Automata Learning with 
Equivalence (and SAT-solver)

(Heule and Verwer’10)

LT

Learner: keeps a Boolean formula  representing a set  of DFAs

with  states (  is incremented as needed)

φ Sφ
n n

Main loop:

1. Learner guesses  [using SAT-solver]

2. If  with cex , incorporate  into  as a 

“blocking clause” and goto (1)

Aφ ∈ Sφ
L(Aφ) ≠ LT w ∈ Σ* w φ



Non-Uniqueness of Target 
Automata

Safety: ∃Inv(Init ⊆ Inv ∧ Inv ∩ Bad = ∅ ∧ postR(Inv) ⊆ Inv)

 is not unique in general!Inv

Solution: Teacher returns a boolean formula as a blocking clause

For  violating (1)-(2), teacher can reply a +/- cexLT

For  violating (3), teacher replies an implication cexLT
v ∈ LT → w ∈ LT

(1) (2) (3)



Sometimes Membership 
can be implemented

Membership query: 

                Using finite-state model checker to check if

                        

x ∈ LT

{y ∈ Init : |y | = |x |} →* x
Possible because of

length-preserving assumption

Empirical observation:

when learning with ME+EQ can be applied, it’s faster than

SAT-based learning



Experimental Results



Conclusion



Summary

• RMC can be in general formulated as a regular synthesis 
problem


• Future work: 
(1) more general and faster synthesis algorithm for regular 
synthesis 
(2) Extension to non-length-preserving RMC and -RMC 
(proof rules are more complicated requiring Ramsey 
quantifiers)

ω



ANNEX



Strict but Generous Teacher
Since there could be multiple Inv, we implement a teacher that is: 
1. strict: provides hints consistent with minimal invariant  
2. generous: accepts any invariant

LT = post*(Init)

How to answer membership query x ∈ LT
 IFF x ∈ LT {y ∈ Init : |y | = |x |} →* x

use automata algorithm
Init ⊆ L ∧ L ∩ Bad = ∅ ∧ R(L) ⊆ L

use finite-state model checker

How to answer equivalence query L = LT

L

R
Counterexample for R(L) ⊆ L

 is reachable ==> add  to L
 is NOT reachable (or  ) => remove  from ∈ Bad L

(FMCAD’17)


