Regular Model
Checking Revisited

Anthony W. Lin
(TU Kaiserslautern and Max-Planck Institute for Software Systems, Germany)
[Joint with Philipp Rimmer]

SynCoP’22, Munich

Acknowledgment

Outline of the talk

® RMC background and some history
® Reformulation of RMC in terms regular synthesis problem

® Brief overview of automata learning for regular synthesis

Parameterized Systems

Definition: An infinite family of finite-state systems

F = {Distributed Protocol with n finite processes : n € N}

Plethora of examples from distributed computing, e.g., Dining
Philosopher protocol, Bakery Protocol, etc.

Undecidability for simple safety properties (Apt & Kozen’86)

Lots of work on parameterized systems dating back to 1990s
by Emerson, Pnueli, and others

Regular Model Checking

A symbolic framework for verifying parameterized systems

Symbolic model checking with rich assertional langusz
Y Resten, O Maler, M Marcus, A Pnueli... - ... Conference on Computer

... In this section we demonstrate the use of the class of regular langua:
languages. As a running example, we ... Going back to the use of FSAs
language, we observe that if A is an automaton characterizing a set of s

% Save Y9 Cite Cited by 208 Related articles All 20 versions

Regular model checking
A Bouaijjani, B Jonsson, M Nilsson, T Touili - International Conference on ..., 2000 - Spring

... We present regular model checking, a framework for algorithmic verification of infinite-
systems with, ... States are represented by strings over a finite alphabet and the transition
relation by a regular length-... We introduce the program model used in regular model cl

% Save YY Cite Cited by 369 Related articles All 24 versions

Verifying systems with infinite but regular state spaces
P Wolper, B Boigelot - ... Conference on Computer Aided Verification, 1998 - Springer

... to consider a larger class of systems, but to be satisfied with a ... of closed systems wl
infinite state space originates from the ... The focus on closed systems is typical of many

Crux:

% Save Y9 Cite Cited by 193 Related articles All 14 versions Web of Science: 65

1. Model configuration as a string
2. Represent an infinite set of strings using regular languages

3. Model transition relation by a length-preserving transducer R

other notions of transducers (e.g. over trees, w-words) are
possible, but we restrict to this for simplicity

Token Passing Protocol

O—O—0O—0O—0

Token Passing Protocol

O—©O—0O—0O—0

Token Passing Protocol

O—©O—0O—0O—0

Token Passing Protocol

O—O—©—0O—0

Token Passing Protocol

O—O—0O—©—0

Token Passing Protocol

O—O—0O0—0—©

=06

Safety: prove that the token never disappears

Liveness: prove that the token always reaches the last
process (under some fairness assumption)

Model in RMC

@—»Q—{)—»@—»@ represented as 10000
(O)—()—(—()——() represented as 01000

The set Init of initial configurations is a regular language:
Init = 10*
The set Bad of bad configurations is a regular language:
Init = O*
The transition relation (over strings) can be represented as transducer:

0/0 0/0
1/0 0/1 /\

—

R= __,

Computing Closures

Reachability Set

Compute a regular language representing post;g(lnit) or its
overapproximation

Useful for safety: § 2 posts(Init) AS N Bad = @ — safe

post*(Init)

For our simple token-passing example:
Init = 10* So: post*(Init) = 0*10*
Bad = 0% We could also take S = (0 + 1)*1(0 4+ 1)*

Problem and Solutions

Problem with computing closures:

1. Non-regularity

2. Non-termination

3. Regular but extremely large states

General solutions:

1. Acceleration (Abdulla, Jonsson, Nilsson, Orso; Boigelot et al.)

2. Widening (Bouajjani and Touili; Boigelot, Legay, and Wolper; Yu, Alkhalaf,
Bultan, and Ibarra)

3. Abstraction (Bouajjani, Habermehl, VOJnar)

4. Automata learning s el
(ore 2010: Vardhan et al.; Habermehl and Vojnar)
(post 2010: Neider and Jansen; Chen, Hong, Lengal, L., Majumdar,
Markgraf, Neider, RUmmer, Stan)

Inspired our new
framework

RMC Beyond Safety

So far, only automata learning enjoys some success:

Liveness of Randomized Distributed Protocols (L. & Rummer, Lengal,
L., Majumdar, and Rummer)

Solving Safety Games (Neider and Topcu; Markgraf, Hong, L., Najib
and Neider)

Probabilistic Bisimulation and Anonymity Protocols (Hong, L.,
Majumdar, RUmmer)

Knowledge Reasoning in Multi-Agent Systems (Stan and L.)

Symmetry Detection in RMC (L., Nguyen, RUmmer, and Sun)

RMC as a Regular
Synthesis Problem

Deductive Verification

Commonly used in program verification (among others)

X =0) o \
while true: Prove “ercor 15 never pranted
X=X+ 2
TX%2==1:
print “error”
Safety as “Invariant checking” in some decidable theory:

INit(x) :=x =0 Bad(x) :=x =, 1

Want to synthesize formula Inv(x) s.t.
Vx(Init(x) = Inv(x))
Vx(Inv(x) — —Bad(x))
Vx(Inv(x) — Inv(x + 2))

Satisfied by Inv(x) :=x =, 0

Proposition: Given Presburger Inv, invariant checking is decidable

Decidable Theory for RMC

Which decidable theory of reqular languages and transducers
IS suitable for deductive verification in RMC?

Our answer: universal automatic structure (Blumensath&Gradel’00)

= (X*:<,eql, {L};crEG)

Domain is the set of all words over 2

< is the prefix-of relation: v < w iff v is a prefix of w
eql is the equal-length relation: egl(v, w) iff |v| = | w|

L is any regular language: L(x) iff x € L

Theorem (BG'00): FO theory over &, is decidable

Regular relations

r-ary relation over 2* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over

the alphabet (2,)"
where 2, :=2U{ L}

How A defines a relation?

given a tuple v = (wy, ..., w,), write it down as a matrix M
with each w; being the ith row (pad shorter string with L)

Example:

a a a
v := (aaa, cb, a) M, = <b c 1)
a 1 1

Regular relations

r-ary relation over 2* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over

the alphabet (2,)"
where 2, :=2U{ L}

How A defines a relation?

Run A on M, column-by-column

v

v := (aaa, cb, a) M- = (

o S
<
N—

e 9

Regular relations

r-ary relation over 2* definable by a synchronous automaton A

A synchronous automaton is simply an automaton over

the alphabet (2,)"
where 2, :=2U{ L}

How A defines a relation?

Run A on M, column-by-column

a
V.= (aaa,cb,a) M- = ([9

5
a

= o 9
= = S
N—

Regular relations

r-ary relation over 2* definable by a synchronous automaton A
A synchronous automaton is simply an automaton over

the alphabet (2,)"
where 2, (=2 U { L }

How A defines a relation?

Run A on M, column-by-column

a a [a
v := (aaa,cb,a) M, = ([9 c |1)

Define: Rel(A) := {v: M, € L(A)}

Regular Relations in ©,

Arelation R C (X*)" is definable in © , iff there is an FO formula
P(x, ..., X,.) s.t.
R={w,...w):© Fepw,...,w,)}

Theorem (BG'00): Regular relations coincide precisely with
relations definable in ©

RMC as a Regular
Synthesis Problem

Existential Second-Order (ESO) formulas over ©

O :=4dR,,....R
where oo B

(1) R; is a second-order variable of arity r;

(2) @ is an FO formula over © U {R;, ..., R}
ESO model checking over &.:
given an ESO formula @ over © , decide if ©, F ®

Reqgular Synthesis for RMC:
given an ESO formula @ over © , decide if there exist r;-ary
regular relations R, such that ©, F ¢

Empirically: Regular proofs suffice in practice

Safety as Regular Synthesis

Inputs: (1) regular languages Init, Bad,
(2) length-preserving regular relation R

Verification Condition:
dInv(Init C Inv A Inv N Bad = & A posty(Inv) C Inv)

Vx(Init(x) — Inv(x)) / Vx, y(Inv(x) A R(x,/y) = Inv(y))
Vx(Inv(x) — —Bad(x))

Our simple token-passing example:
Init = 10* Can take Inv; = 0*10*
Bad =0~ or Invy = (0 + 1)*1(0 + 1)*

Termination as Regular
Synthesis

Termination: no infinite runs exist

Inputs: (1) regular languages Init,
(2) length-preserving regular relation R

Verification Condition:

d/nv C 2%, Rank C 2% X 2*:

(1) Init C Inv,

(2) Inv is inductive

(3) Rank covers reachable transitions: R N (Inv X Inv) C Rank
(4) Rank is transitive and irreflexive

Verification Condition:
dIny C X* Rank C X* X X*:

(1) Init C Inv, E am Ie
(2) Inv is inductive X

(3) Rank covers reachable transitions: R N Inv X Inv C Rank

(4) Rank is transitive and irreflexive

Consider a length-preserving regular relation over 2 = {0,1}
that nondeterministically rewrites 10 to 01

1010 = 0110 — 0101 — 0011
Init = 02*1
R :=((0,0) + (1,1))*(1,0)(0,1)((0,0) + (1,1))*

(0,0) %7

@

1.0
Iny = X% Rank = qi —LY

(1.1)
[exicographic order

Reachability Games as
Regular Synthesis

Inputs: (1) regular languages Init, F
(2) length-preserving regular relations Ry, R, with
post;(X*) N pres(X*) = [i.e. strictly alternating]

Goal: Player 2 (resp. 1) tries to reach (resp. avoid) F from Init

Verification Condition:

d/nv C 2%, Rank C 2% X 2%:

(1) Init C Inv, (2) Rank is transitive and irreflexive
(3) Player O can force the game to progress according to Rank

s € Inv\F v . ' & F

%" e Iny

Example: Take-Away Game

There are n coins on the table

At each turn, a player can take 1,2, or 3 coins
Player who is to move when no coins are left loses
Initially, Player 1 moves

The game strictly alternates

Example: Take-Away Game

Regular modelling:
Dom = (p; + py)1%0%

Say we want to prove that, starting with 4k coins, Player 2
has a winning strategy
Init = p;(1111)*0*

F — pl()*
Transitions:

R, = (py, pp)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*
Ry, = (p,, p)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*

Regular Proofs

Liveness of Randomized
Parameterized Systems

Similar regular encoding as in 2-player reachability games is
possible

Lots of examples:

1. Lehmann-Rabin dining philosopher protocol
2. lsraeli-dalfon self-stablilizing protocol

3. Herman self-stabilizing protocol
4,

Regular synthesis
algorithms via automata
learning: Brief Overview

The Gist of Automata
Learning (a la Angluin)

Learner tries to learn Ly from Teacher

Typical queries: WO common variations
. | in RMC:
(ME) Membership query: x € Ly I, EQ only

(EQ) Equivalence query: L = Ly 2. ME+EQ

Membership

Learner tries to learn Ly from Teacher

Equivalence

Learner tries to learn Ly from Teacher

Counterexample: w € (L,\L) U (L\L7)

Theorem (Angluin): there is a polynomial-time algorithm for
inferring an unknown DFA from a teacher with ME+EQ

Problem with Membership

In general, difficult to implement a teacher for membership

Example: to learn a post (Init), checking

whether w € p0st;§(lnit) is typically undecidable

In restricted cases, solutions are available (we will see later)

In general case, it seems a good idea to dispense with memberships

Automata Learning with
Equivalence (and SAT-solver)

(Heule and Verwer’10)

Learner: keeps a Boolean formula @ repkesehting a set S(p of DFAs

with n states (n is incremented as needed)
Main loop:

1. Learner guesses A(p = S(p [using SAT-solver]

2. |f L(A(p) # L, with cex w € X%, incorporate w into ¢ as a
“blocking clause” and goto (1)

Non-Uniqueness of Target
Automata

Safety: d/nv(Init C Inv A Inv N Bad = @ A posty(Inv) C Inv)
(1) (2) (3)

[nv is not unigue in general!

Solution: Teacher returns a boolean formula as a blocking clause

For L violating (1)-(2), teacher can reply a +/- cex

For L, violating (3), teacher replies an implication cex
velL—->wel;

Sometimes Membership
can be implemented

Membership query: x € Ly
Using finite-state model checker to check if

lyemnit:|yl=|x|} ->*x
Possible because of

Length—presecvang assumption

Empirical observation:
when learning with ME+EQ can be applied, it’s faster than
SAT-based learning

Experimental Results

The safety property Learning SAT T(O)RMC ARMC
Name #L | Sinit | Tinit | Stran | Ttran | Sbad | Toag | TiMe | Siny | Tinv | Time | Sipy | Tiny || Time | Siny | Tiny Time
Bakery 3 3 3 5 19 3 9 00s | 6 18 05s | 2 5 00s | 6 11 0.0s
Burns 12 | 3 3 10 | 125 | 3 36 | 02s 8 96 11s | 2 | 10 | 01s | 7 | 38 0.6s
Szymanski 11 9 9 | 123 | 469 | 13 | 40 || 0.6s | 48 | 528 | t.o. - - 09s | 51 | 102 t.o.
German 581 | 3 3 17 | 95k | 4 | 2112 48s | 14 | 8134] t.o. - - t.o. - - 2.3s
Dijkstra, linear 42 | 1 1 13 | 827 | 3 126 | 01s | 9 | 378 § 1.7s | 2 | 24 | 61s | 8 | 83 t.o.
Dijkstra, ring 12 | 3 3 13 | 199 | 3 36 14s | 22 | 264 | 09s | 2 | 14 | to. - - t.o.
Dining Crypt. 14 | 10 | 30 | 17 | 70 | 12 | 70 || 0.1s | 32 | 448 | t.o. - - 0.2s | 37 | 164 1.3s
Coffee Can 6 8 18 | 13 | 34 5 8 00s | 3 18 | 0.2s | 2 7 01s | 6 | 13 0.0s
Herman, linear 2 2 4 4 10 1 1 0.0s | 2 4 02s | 2 4 00s | 2 4 0.0s
Herman, ring 2 2 4 9 22 1 1 0.0s 2 4 0.4s 2 4 0.0s 2 4 0.0s
Israeli-Jalfon 2 3 6 24 | 62 1 1 0.0s | 4 8 0.1s | 2 4 0.0s | 4 8 0.0s
Lehmann-Rabin | 6 4 4 14 | 96 3 13 || 0.1s | 8 48 | 05s | 2 | 11 | 08s | 19 | 105 0.0s
LR Dining Phil. 4 4 4 3 10 3 4 0.0s | 4 16 | 0.2s | 2 6 01s | 7 | 18 0.0s
Mux Array 6 3 3 4 31 3 18 || 0.0s | 5 30 | 04s | 2 7 02s | 4 | 14 0.1s
Res. Allocator 3 3 3 7 25 4 11 00s | 5 15 | 0.0s | 3 7 00s | 4 9 0.0s
Kanban 3 | 25 | 48 | 98 | 260 | 37 | 68 t.o. - - t.o. - - t.o. - - t.o.
Water Jugs 11 5 6 23 | 132 5 12 0.1s | 24 | 264 | t.o. - - t.o. - - t.o.

Conclusion

Summary

® RMC can be in general formulated as a regular synthesis
problem

® Future work:
(1) more general and faster synthesis algorithm for regular
synthesis

(2) Extension to non-length-preserving RMC and w-RMC
(oroof rules are more complicated requiring Ramsey
quantifiers)

ANNEX

e

/' v\

Strict but Generous Teacher\-*

(FMCAD’17)

Since there could be multiple Inv, we implement a teacher that is:

1. strict: provides hints consistent with minimal invariant L = post*(Init)
2. generous: accepts any invariant

How to answer membership query x € Ly

x€E€LpIFF{y €lnit: |y|=|x]|} —=*x
use finite-state model checker

How to answer equivalence query L = Ly

INtCLALNBad=@AR(L)CL
use automata algorithm

Counterexample for R(L) C L

R4 @is NOT reachable (or ® € Bad) => remove @ from L
® is reachable ==> add @ to L

