
Regular Model
Checking Revisited

Anthony W. Lin

(TU Kaiserslautern and Max-Planck Institute for Software Systems, Germany)

[Joint with Philipp Rümmer]

SynCoP’22, Munich

Acknowledgment

Outline of the talk

• RMC background and some history

• Reformulation of RMC in terms regular synthesis problem

• Brief overview of automata learning for regular synthesis

Parameterized Systems
Definition: An infinite family of finite-state systems

ℱ := {Distributed Protocol with n finite processes : n ∈ ℕ}

Plethora of examples from distributed computing, e.g., Dining
Philosopher protocol, Bakery Protocol, etc.

Undecidability for simple safety properties (Apt & Kozen’86)

Lots of work on parameterized systems dating back to 1990s

by Emerson, Pnueli, and others

Regular Model Checking

Crux:

1. Model configuration as a string

2. Represent an infinite set of strings using regular languages

3. Model transition relation by a length-preserving transducer R

A symbolic framework for verifying parameterized systems

other notions of transducers (e.g. over trees, -words) are

possible, but we restrict to this for simplicity

ω

Token Passing Protocol

t = 1

Token Passing Protocol

t = 2

Token Passing Protocol

t = 3

Token Passing Protocol

t = 4

Token Passing Protocol

t = 5

Token Passing Protocol

t = 6

Safety: prove that the token never disappears
Liveness: prove that the token always reaches the last

process (under some fairness assumption)

Model in RMC
represented as 10000

represented as 01000

0/0
1/0 0/1

0/0

R :=

The transition relation (over strings) can be represented as transducer:

The set of initial configurations is a regular language:Init
Init = 10*

The set of bad configurations is a regular language:Bad
Init = 0*

Computing Closures

Reachability Set
Compute a regular language representing or its
overapproximation

post*R (Init)

Useful for safety: S ⊇ post*R (Init) ∧ S ∩ Bad = ∅ ⟶ safe

Badpost*(Init)

S

For our simple token-passing example:
Init = 10*
Bad = 0*

So: post*(Init) = 0*10*
We could also take S = (0 + 1)*1(0 + 1)*

Problem and Solutions
Problem with computing closures:

1. Non-regularity

2. Non-termination

3. Regular but extremely large states

General solutions:

1. Acceleration (Abdulla, Jonsson, Nilsson, Orso; Boigelot et al.)

2. Widening (Bouajjani and Touili; Boigelot, Legay, and Wolper; Yu, Alkhalaf,

Bultan, and Ibarra)

3. Abstraction (Bouajjani, Habermehl, Vojnar)

4. Automata learning  

(pre 2010: Vardhan et al.; Habermehl and Vojnar) 
(post 2010: Neider and Jansen; Chen, Hong, Lengal, L., Majumdar,
Markgraf, Neider, Rümmer, Stan)

inspired our new
framework

RMC Beyond Safety
So far, only automata learning enjoys some success:

Liveness of Randomized Distributed Protocols (L. & Rümmer, Lengal, 
L., Majumdar, and Rümmer)

Solving Safety Games (Neider and Topcu; Markgraf, Hong, L., Najib

and Neider)

Probabilistic Bisimulation and Anonymity Protocols (Hong, L.,

Majumdar, Rümmer)

Knowledge Reasoning in Multi-Agent Systems (Stan and L.)

Symmetry Detection in RMC (L., Nguyen, Rümmer, and Sun)

RMC as a Regular
Synthesis Problem

Deductive Verification
Commonly used in program verification (among others)

x = 0

while true:

 x = x + 2

 if x % 2 == 1:

 print “error”

Prove “error” is never printed

Satisfied by Inv(x) := x ≡2 0

Init(x) := x = 0 Bad(x) := x ≡2 1

Want to synthesize formula s.t.Inv(x)
∀x(Init(x) → Inv(x))
∀x(Inv(x) → ¬Bad(x))
∀x(Inv(x) → Inv(x + 2))

Safety as “Invariant checking” in some decidable theory:

Proposition: Given Presburger Inv, invariant checking is decidable

Decidable Theory for RMC
Which decidable theory of regular languages and transducers

is suitable for deductive verification in RMC?

Our answer: universal automatic structure (Blumensath&Grädel’00)

𝔖u = ⟨Σ* :⪯ , eql, {L}L∈REG⟩
Domain is the set of all words over Σ

 is the prefix-of relation: iff is a prefix of ⪯ v ⪯ w v w
 is the equal-length relation: iff eql eql(v, w) |v | = |w |

 is any regular language: iff L L(x) x ∈ L

Theorem (BG’00): FO theory over is decidable𝔖u

Regular relations
-ary relation over definable by a synchronous automaton r Σ* A

A synchronous automaton is simply an automaton over

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }

How defines a relation?A
given a tuple , write it down as a matrix

with each being the th row (pad shorter string with)

v̄ = (w1, …, wr) Mv̄
wi i ⊥

Example:
v̄ := (aaa, cb, a) Mv̄ := (

a a a
b c ⊥
a ⊥ ⊥)

Regular relations
-ary relation over definable by a synchronous automaton r Σ* A

How defines a relation?A

Run on column-by-columnA Mv̄

v̄ := (aaa, cb, a) Mv̄ := (
a a a
b c ⊥
a ⊥ ⊥)
A

A synchronous automaton is simply an automaton over

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }

Regular relations
-ary relation over definable by a synchronous automaton r Σ* A

How defines a relation?A

Run on column-by-columnA Mv̄

v̄ := (aaa, cb, a) Mv̄ := (
a a a
b c ⊥
a ⊥ ⊥)

A

A synchronous automaton is simply an automaton over

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }

Regular relations
-ary relation over definable by a synchronous automaton r Σ* A

How defines a relation?A

Run on column-by-columnA Mv̄

v̄ := (aaa, cb, a) Mv̄ := (
a a a
b c ⊥
a ⊥ ⊥)

A
Define: Rel(A) := {v̄ : Mv̄ ∈ L(A)}

A synchronous automaton is simply an automaton over

the alphabet (Σ⊥)r

where Σ⊥ := Σ ∪ { ⊥ }

Regular Relations in 𝔖u

Theorem (BG’00): Regular relations coincide precisely with 
relations definable in 𝔖u

A relation is definable in iff there is an FO formula

 s.t.

R ⊆ (Σ*)r 𝔖u
φ(x1, …, xr)

R = {(w1, …, wr) : 𝔖u ⊧ φ(w1, …, wr)}

RMC as a Regular
Synthesis Problem

ESO model checking over : 
given an ESO formula over , decide if

𝔖u
Φ 𝔖u 𝔖u ⊧ Φ

Existential Second-Order (ESO) formulas over 𝔖u
Φ := ∃R1, …, Rnφwhere 

(1) is a second-order variable of arity

(2) is an FO formula over

Ri ri
φ 𝔖u ∪ {R1, …, Rn}

Regular Synthesis for RMC: 
given an ESO formula over , decide if there exist -ary

regular relations such that

Φ 𝔖u ri
Ri 𝔖u ⊧ φ

Empirically: Regular proofs suffice in practice

Safety as Regular Synthesis
Inputs: (1) regular languages ,

 (2) length-preserving regular relation

Init, Bad
R

Verification Condition:

 ∃Inv(Init ⊆ Inv ∧ Inv ∩ Bad = ∅ ∧ postR(Inv) ⊆ Inv)

∀x(Init(x) → Inv(x))
∀x(Inv(x) → ¬Bad(x))

∀x, y(Inv(x) ∧ R(x, y) → Inv(y))

Our simple token-passing example:
Init = 10*
Bad = 0*

Can take Inv1 = 0*10*
or Inv2 = (0 + 1)*1(0 + 1)*

Termination as Regular
Synthesis

Inputs: (1) regular languages ,

 (2) length-preserving regular relation

Init
R

Verification Condition:

, : 

(1) ,

(2) is inductive

(3) covers reachable transitions:

(4) is transitive and irreflexive

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv
Inv
Rank R ∩ (Inv × Inv) ⊆ Rank
Rank

Termination: no infinite runs exist

Example
Verification Condition:

, : 
(1) ,

(2) is inductive

(3) covers reachable transitions:

(4) is transitive and irreflexive

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv
Inv
Rank R ∩ Inv × Inv ⊆ Rank
Rank

Consider a length-preserving regular relation over

that nondeterministically rewrites 10 to 01

Σ = {0,1}

 1010 → 0110 → 0101 → 0011

Init = 0Σ*1
R := ((0,0) + (1,1))*(1,0)(0,1)((0,0) + (1,1))*

Inv = Σ* Rank =

Lexicographic order

Reachability Games as
Regular Synthesis

Inputs: (1) regular languages ,

 (2) length-preserving regular relations with

 [i.e. strictly alternating.]

Init F
R1, R2

post*Ri
(Σ*) ∩ pre*Ri

(Σ*) = ∅

Verification Condition:

, : 

(1) , (2) is transitive and irreflexive

(3) Player 0 can force the game to progress according to

∃Inv ⊆ Σ* Rank ⊆ Σ* × Σ*
Init ⊆ Inv Rank

Rank

Goal: Player 2 (resp. 1) tries to reach (resp. avoid) from F Init

s ∈ Inv∖F s′￼∉ F1
∀

s′￼′￼∈ Inv
∃

2
Rank

Example: Take-Away Game
There are coins on the tablen

At each turn, a player can take 1,2, or 3 coins

Player who is to move when no coins are left loses

Initially, Player 1 moves

The game strictly alternates

Example: Take-Away Game
Dom = (p1 + p2)1*0*

Regular modelling:

e.g. represents Player 1’s turn onp1111000

Say we want to prove that, starting with coins, Player 2

has a winning strategy

4k

F = p10*

Init = p1(1111)*0*

Transitions:
R1 = (p1, p2)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*
R2 = (p2, p1)(1,1)*((1,0) + (11,00) + (111,000))(0,0)*

Regular Proofs

Inv Rank

Liveness of Randomized
Parameterized Systems

Similar regular encoding as in 2-player reachability games is

possible

Lots of examples:

1. Lehmann-Rabin dining philosopher protocol

2. Israeli-Jalfon self-stabilizing protocol

3. Herman self-stabilizing protocol

4. …

Regular synthesis
algorithms via automata
learning: Brief Overview

The Gist of Automata
Learning (a la Angluin)

LT

Learner tries to learn from TeacherLT

(ME) Membership query: x ∈ LT

(EQ) Equivalence query: L = LT

Typical queries: Two common variations

in RMC:

1. EQ only

2. ME+EQ

Membership
LT

Learner tries to learn from TeacherLT

x ∈ LT

Y/N

Equivalence
LT

Learner tries to learn from TeacherLT

Y/N

L = LT

Counterexample: w ∈ (LT∖L) ∪ (L∖LT)
Theorem (Angluin): there is a polynomial-time algorithm for

inferring an unknown DFA from a teacher with ME+EQ

Problem with Membership
In general, difficult to implement a teacher for membership

Example: to learn a , checking

whether is typically undecidable

post*R (Init)
w ∈ post*R (Init)

In restricted cases, solutions are available (we will see later)

In general case, it seems a good idea to dispense with memberships

Automata Learning with
Equivalence (and SAT-solver)

(Heule and Verwer’10)

LT

Learner: keeps a Boolean formula representing a set of DFAs

with states (is incremented as needed)

φ Sφ
n n

Main loop:

1. Learner guesses [using SAT-solver]

2. If with cex , incorporate into as a 

“blocking clause” and goto (1)

Aφ ∈ Sφ
L(Aφ) ≠ LT w ∈ Σ* w φ

Non-Uniqueness of Target
Automata

Safety: ∃Inv(Init ⊆ Inv ∧ Inv ∩ Bad = ∅ ∧ postR(Inv) ⊆ Inv)

 is not unique in general!Inv

Solution: Teacher returns a boolean formula as a blocking clause

For violating (1)-(2), teacher can reply a +/- cexLT

For violating (3), teacher replies an implication cexLT
v ∈ LT → w ∈ LT

(1) (2) (3)

Sometimes Membership
can be implemented

Membership query:

 Using finite-state model checker to check if

x ∈ LT

{y ∈ Init : |y | = |x |} →* x
Possible because of

length-preserving assumption

Empirical observation:

when learning with ME+EQ can be applied, it’s faster than

SAT-based learning

Experimental Results

Conclusion

Summary

• RMC can be in general formulated as a regular synthesis
problem

• Future work: 
(1) more general and faster synthesis algorithm for regular
synthesis 
(2) Extension to non-length-preserving RMC and -RMC
(proof rules are more complicated requiring Ramsey
quantifiers)

ω

ANNEX

Strict but Generous Teacher
Since there could be multiple Inv, we implement a teacher that is: 
1. strict: provides hints consistent with minimal invariant
2. generous: accepts any invariant

LT = post*(Init)

How to answer membership query x ∈ LT
 IFF x ∈ LT {y ∈ Init : |y | = |x |} →* x

use automata algorithm
Init ⊆ L ∧ L ∩ Bad = ∅ ∧ R(L) ⊆ L

use finite-state model checker

How to answer equivalence query L = LT

L

R
Counterexample for R(L) ⊆ L

 is reachable ==> add to L
 is NOT reachable (or) => remove from ∈ Bad L

(FMCAD’17)

