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Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?
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Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥
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Time Petri Nets and State Classes

State Classes1

I A state class Cσ is the (collapsed) set of states obtained by the transition
sequence σ;

I Those states all share the same marking;
I The union of all points in the intervals in the valuations on the transitions

can be represented by a convex polyhedron (encoded by a Difference Bound
Matrix, DBM);

I A state class is thus a pair C = (m,D), where m is a marking, and D a DBM.

1Berthomieu and Diaz. Modeling and verification of time dependent systems using time Petri nets. IEEE trans. on soft. eng., 17(3):259–273, 1991.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 7 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
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Time Petri Nets and State Classes

Meeting across the river
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Time Petri Nets and State Classes

Meeting optimally across the river

What is an optimal (common) strategy to meet?

I Pay 1 for each move;
I Pay 1 for each time unit they wait

I either while being idle in a city
I or globally until they meet
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Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4
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Costs in Time Petri Nets

The min/inf-cost Reachability Problem

Inf-cost reachability
Given a Cost-TPN N and a set of markings Goal, decide if Goal is reachable and
if so compute:

inf
ρ s.t. last(ρ)∈Goal

cost(ρ)
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Costs in Time Petri Nets

Symbolic Algorithm for Inf-cost Reachability 23

1: Cost←∞
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal and cost(Cσ) < Cost then
7: Cost← cost(Cσ)
8: end if
9: if for all C ′ ∈ Passed,Cσ 64C ′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return Cost

2Larsen et al. As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV’01, 2001.
3Rasmussen et al. On using priced timed automata to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.
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Costs in Time Petri Nets

Cost State Classes

I From a transition sequence σ, we want to compute cost(σ) the inf-cost of all
runs built on σ

I We extend state class firing domains with a new variable c:
⇒ Cost state classes: Cσ = (m,D)

I When firing ti , c changes by ω(ti) + θi ∗ cr(m)

I An extended firing domain D is not a DBM anymore but still a convex
polyhedron;

I cost(σ) = cost(Cσ) = inf(~θ,c)∈D c computable using linear programming.
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Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1
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Costs in Time Petri Nets

Cost State Class Subsumption: 4

θ

c

<

θ

c

Can be checked with linear programming
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Costs in Time Petri Nets

Relaxing Cost State Classes

θ

c

⊇

θ

c
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Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I The computation of cost state classes relies on general convex polyhedra;
I Can we also do it only with DBMs (like for Timed Automata)?
I We need to closely examine the variable elimination in the successor

computation;

I It can be done by the Fourier-Motzkin algorithm: to eliminate θ1 just write
that all lower bounds of θ1 are less than all upper bounds of θ1:

θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c ′ − 1− 3 ∗ θ1 ≥ 0
0 ≤ θ′2
0 ≤ θ′4

eliminate θ1−−−−−−−→

0 ≤ 4
0 ≤ 6− θ′2
. . .
3 ∗ 0 ≤ c ′ − 1
3 ∗ (5− θ′2) ≤ c ′ − 1
3 ∗ (1− θ′4) ≤ c ′ − 1
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Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I We can split the successor according to which term among 0, 5− θ′2, and
1− θ′4 is the greatest: this always gives DBMs with exactly one lower bound
inequality on cost (→ simple cost state classes):

. . . . . . . . .
0 ≥ 5− θ′2 or 5− θ′2 ≥ 0 or 1− θ′4 ≥ 0
0 ≥ 1− θ′4 5− θ′2 ≥ 1− θ′4 1− θ′4 ≥ 5− θ′2
c ′ ≥ 1 c ′ ≥ 16− 3θ′2 c ′ ≥ 4− 3θ′4

I The inequations on non-cost variables can be directly computed as usual 4 5

I Eliminating disabled variables other than the fired transition can be done
similarly.

4Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en O(n2) et des temps de chemin en O(mn). TSI., 22(4):435–459, 2003.
5Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209–225, 2016.
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Costs in Time Petri Nets

Deciding Subsumption for Simple Cost State Classes

I To decide if (m,D, c ≥ `(~θ)) 4 (m′,D ′, c ≥ `′(~θ)), we can check if 6:
1. m = m′;
2. D ⊆ D ′ (DBM inclusion);
3. inf~θ∈D(`− `′)(~θ) ≥ 0

I Minimization over a DBM can be done efficiently as an instance of the
mincost flow graph problem6.

6Rasmussen et al. On using priced timed automata to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.
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Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2
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Termination of the Infcost Algorithm

Termination for Normal Cost State Classes

Lemma
< is a well quasi-order on cost state classes.

1. < is actually a better quasi-order on simple cost state classes;

2. Therefore w such that X w Y iff ∀y ∈ Y ,∃x ∈ X such that x < y is a better
quasi-order7;

3. A relaxed cost state class is a union of simple cost state classes;
4. w implies ⊇, implies < for relaxed classes.

7Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.
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Termination of the Infcost Algorithm

Meeting optimally across the river

Waiting time

Global time
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Termination of the Infcost Algorithm

Can we do better? Meeting optimally and parametrically

C1(b) C2(b) C3(b)

C4(b) C5(b) C6(b)

7a 10a

5a 3a

20 20 20

I Let b be the maximum time they accept to wait in a city;
I They can accept to go more slowly (except on the river) by a common factor

a;
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Parametric Cost Time Petri Nets
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Parametric Cost Time Petri Nets

Parametric Time Petri Nets

p1 p2

t1[0, a] t2[b, 6]

p3 p4

t3[a, 4]

p5
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Parametric Cost Time Petri Nets

Parametric Bounded-Cost Problems

I Existential problem: given cmax and a marking m, does there exist a value
of the parameters such that m is reachable with cost less or equal to cmax.

I Bounded-cost Synthesis problem: find all such parameter values.
I Infcost problem: What is the infimum cost we can achieve over all

parameter values?
I Infcost synthesis problem: find all parameter values for which the infimum

cost (over all parameter values) can be achieved.
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Parametric Cost Time Petri Nets

Undecidability of the existential problem
Theorem
The existential problem is undecidable for bounded parametric time Petri nets.

Encode the halting problem of two-counter machines in the existential problem for
time bounded reachability.
I Start from an encoding for reachability in Parametric Timed Automata8

I Adapt to time Petri nets;
I Make all instructions execute in b time units instead of 1.

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

Px Py

okx oky

sj

εz0

[0, 0]
tz=b
[b, b]

εzb

[0, 0]
tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

done [0, 0]

8André et al. Decision problems for parametric timed automata. In ICFEM, 2016.
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Parametric Cost Time Petri Nets

Parametric Cost State Classes

I We can compute state classes as before;
I The polyhedra obtained are parametric DBMs plus cost inequalities;
I Instantiating parameters with integer (or rational) values gives again a cost

state class;
I Class subsumption is extended naturally: subsumed if subsumed for all

parameter valuations.
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Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .
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Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .
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Parametric Cost Time Petri Nets

Symbolic Semi-algorithm for Bounded-Cost Reachability

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
D ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ Passed,Cσ 64 C ′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes
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Parametric Cost Time Petri Nets

Symbolic Semi-algorithm for Infcost Reachability
1: Cost←∞
2: PolyRes← ∅
3: Passed← ∅
4: Waiting← {(m0,D0)}
5: while Waiting 6= ∅ do
6: select Cσ = (m,D) from Waiting
7: if m ∈ Goal then
8: if cost(Cσ) < Cost then
9: Cost← cost(Cσ)

10: PolyRes←
(
D ∩ (c = Cost)

)
|P

11: else if cost(Cσ) = Cost then
12: PolyRes← PolyRes ∪

(
D ∩ (c = Cost)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ Passed,Cσ 64 C ′ then
16: add Cσ to Passed
17: for all t ∈ firable(Cσ), add Cσ.t to Waiting
18: end if
19: end while
20: return (Cost,PolyRes)
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Parametric Cost Time Petri Nets

Symbolic Parameter Synthesis Algorithms

I When they terminate, the previous algorithms are sound and complete:

Lemma
For all classes Cσ = (m,D), (~θ, c, v) ∈ D if and only if there exists a run ρ in
v(N ), and I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ),
and ~θ ∈ I.

Lemma
Let Cσ1 and Cσ2 be two state classes such that Cσ1 4 Cσ2 .
If a transition sequence σ is firable from Cσ1 , it is also firable from Cσ2 and
cost(Cσ1.σ) ≥ cost(Cσ2.σ).

I Termination is not guaranteed;
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Parametric Cost Time Petri Nets

Integer hull

We use the integer hull trick9 to:
1. make them compute integer parameter valuations;
2. ensure termination when parameters are bounded.

y

x

9Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.
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Parametric Cost Time Petri Nets

Integer Parameter Synthesis for Bounded-Cost Reachability

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
IH(D) ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ Passed, IH(Cσ) 64 IH(C ′) then

10: add Cσ to Passed
11: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes
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Parametric Cost Time Petri Nets

Integer Parameter Synthesis for Infcost Reachability
1: Cost←∞
2: PolyRes← ∅
3: Passed← ∅
4: Waiting← {(m0,D0)}
5: while Waiting 6= ∅ do
6: select Cσ = (m,D) from Waiting
7: if m ∈ Goal then
8: if cost(IH(Cσ)) < Cost then
9: Cost← cost(IH(Cσ))

10: PolyRes←
(
IH(D) ∩ (c = Cost)

)
|P

11: else if cost(IH(Cσ)) = Cost then
12: PolyRes← PolyRes ∪

(
IH(D) ∩ (c = Cost)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ Passed, IH(Cσ) 64 IH(C ′) then
16: add Cσ to Passed
17: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
18: end if
19: end while
20: return (Cost,PolyRes)
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Parametric Cost Time Petri Nets

Integer Parameter Synthesis
I When they terminate, the previous algorithms are sound and complete for

integer parameter valuations;

Lemma
If v is an integer parameter valuation, then for all classes Cσ = (m,D),
(~θ, c, v) ∈ IH(D) if and only if there exists a run ρ in v(N ), and
I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ), and ~θ ∈ I.

Lemma
Let Cσ1 and Cσ2 be two state classes such that IH(Cσ1) 4 IH(Cσ2).
If a transition sequence σ is NP-firable from Cσ1 it is also NP-firable from Cσ2 and
costN(Cσ1.σ) ≥ costN(Cσ2.σ).

I Termination is still not guaranteed, except when parameters are bounded;
I When parameters are bounded, < is again a well-quasiorder;
I Integer hull can also be computed as part of the successor class computation.
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Parametric Cost Time Petri Nets

Meeting parametrically across the river
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Parametric Cost Time Petri Nets

Meeting parametrically across the river

Infcost

Bounded cost ≤ 25
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Parametric Cost Time Petri Nets

Integer hull and Performance

I Computing the integer hull is expensive:
I In all previous examples real parameters terminate, and faster;

I The integer hull can cut a lot of paths off:
I By setting discrete costs to 0, with a ≤ 10, b = 0 and a bounded cost of 40,

IH terminates in 3s, Real in 55s.
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Conclusion

Conclusion and Perspective

I Summary:
I Using state classes we can solve the optimal cost reachability problem for

bounded TPNs;
I With state classes we need no extrapolation to ensure termination;
I We can directly compute costs using polyhedra or using DBMs, through state

class splitting;
I The polyhedra approach can be extended for parameter synthesis in

bounded-cost and inf-cost reachability;
I The integer hull trick allows for terminating symbolic algorithms for bounded

integer parameters;
I The techniques are implemented in the freely available Roméo tool.

I Future work:
I Optimal cost as a function of parameters;
I Parameter synthesis in parametric cost timed models;
I Integer hull for undecidable non-parametric cost problems (control, upper

bound “hard” constraints).
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