Cost Problems for Parametric Time Petri Nets

Hanifa Boucheneb¹ Didier Lime² Olivier H. Roux² Charlotte Seidner²

¹École Polytechnique de Montréal, Québec, Canada

²Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

SynCoP'22 2nd of April 2022, Munich, Germany

Didier Lime (ECN, LS2N)

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N)

Introduction

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N)

Didier Lime (ECN, LS2N)

Didier Lime (ECN, LS2N)

But that's not how it ended...

They won't wait!

Didier Lime (ECN, LS2N)

Is all hope lost?

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N)

State Classes¹

- A state class C_σ is the (collapsed) set of states obtained by the transition sequence σ;
- Those states all share the same marking;
- The union of all points in the intervals in the valuations on the transitions can be represented by a convex polyhedron (encoded by a Difference Bound Matrix, DBM);
- A state class is thus a pair C = (m, D), where m is a marking, and D a DBM.

¹Berthomieu and Diaz. Modeling and verification of time dependent systems using time Petri nets. *IEEE trans. on soft. eng.*, 17(3):259–273, 1991. Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP'22 7/44

Initially:

Initially:

θ_1	\in	[0, 4]
θ_2	\in	[5, 6]
θ_4	\in	[1, 2]
θ_1	\leq	θ_2
θ_1	\leq	θ_{4}

Eliminate disabled: $\theta'_2 \in [3, 6]$ $\theta'_4 \in [0, 2]$ $\theta'_2 - \theta'_4 \in [3, 5]$

 $\theta_2' + \theta_1 \in [5, 6]$

 $\begin{aligned} \theta_4' + \theta_1 &\in [1, 2] \\ \theta_1 &\leq \theta_2' + \theta_1 \\ \theta_1 &\leq \theta_4' + \theta_1 \end{aligned}$

 $\begin{array}{l} \mbox{Eliminate disabled:}\\ \theta_2' \in [3,6]\\ \theta_4' \in [0,2]\\ \theta_2' - \theta_4' \in [3,5] \end{array}$

Add newly enabled: $\theta'_2 \in [3, 6]$

 $\theta_{3} \in [3, 4]$ $\theta'_{4} \in [0, 2]$ $\theta'_{2} - \theta'_{4} \in [3, 5]$

Time Petri Nets and State Classes

Meeting optimally across the river

What is an **optimal** (common) strategy to meet?

- Pay 1 for each move;
- Pay 1 for each time unit they wait
 - either while being idle in a city
 - or globally until they meet

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N)

The min/inf-cost Reachability Problem

Inf-cost reachability

Given a Cost-TPN ${\cal N}$ and a set of markings Goal, decide if Goal is reachable and if so compute:

 $\inf_{\substack{\rho \text{ s.t. last}(\rho) \in \text{Goal}}} \text{cost}(\rho)$

Symbolic Algorithm for Inf-cost Reachability ²³

- 1: Cost $\leftarrow \infty$
- 2: Passed $\leftarrow \emptyset$
- 3: WAITING $\leftarrow \{(m_0, D_0)\}$
- 4: while WAITING $\neq \emptyset$ do
- 5: select $C_{\sigma} = (m, D)$ from WAITING
- 6: if $m \in \text{Goal}$ and $\text{cost}(\mathbf{C}_{\sigma}) < \text{Cost}$ then
- 7: $\operatorname{Cost} \leftarrow \operatorname{cost}(C_{\sigma})$
- 8: end if
- 9: **if** for all $C' \in \text{PASSED}, C_{\sigma} \not\leq C'$ **then**
- 10: add C_{σ} to PASSED
- 11: for all $t \in firable(C_{\sigma})$, add $C_{\sigma,t}$ to WAITING
- 12: end if
- 13: end while
- 14: return Cost

 $^{^2}$ Larsen et al. As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV'01, 2001.

 $^{^3}$ Rasmussen et al. On using priced timed automata to achieve optimal scheduling. *FMSD*, 29(1):97–114, 2006.

Cost State Classes

- From a transition sequence σ, we want to compute cost(σ) the inf-cost of all runs built on σ
- We extend state class firing domains with a new variable c: ⇒ Cost state classes: C_σ = (m, D)
- When firing t_i , c changes by $\omega(t_i) + \theta_i * cr(m)$
- An extended firing domain D is not a DBM anymore but still a convex polyhedron;
- ► $cost(\sigma) = cost(C_{\sigma}) = inf_{(\vec{\theta},c)\in D} c$ computable using linear programming.

Cost Problems for Parametric Time Petri Nets

16/44

Cost Problems for Parametric Time Petri Nets

Cost Problems for Parametric Time Petri Nets

Cost State Class Subsumption: \preccurlyeq

Cost State Class Subsumption: \preccurlyeq

Cost State Class Subsumption: \preccurlyeq

Can be checked with linear programming

Relaxing Cost State Classes

Relaxing Cost State Classes

Relaxing Cost State Classes

Simple (Relaxed) Cost State Classes

- The computation of cost state classes relies on general convex polyhedra;
- Can we also do it only with DBMs (like for Timed Automata)?
- We need to closely examine the variable elimination in the successor computation;

Simple (Relaxed) Cost State Classes

- The computation of cost state classes relies on general convex polyhedra;
- Can we also do it only with DBMs (like for Timed Automata)?
- We need to closely examine the variable elimination in the successor computation;
- It can be done by the Fourier-Motzkin algorithm: to eliminate θ₁ just write that all lower bounds of θ₁ are less than all upper bounds of θ₁:

$$\begin{array}{lll} \theta_1 \in [0,4] & 0 \leq 4 \\ \theta'_2 + \theta_1 \in [5,6] & 0 \leq 6 - \theta'_2 \\ \theta'_4 + \theta_1 \in [1,2] & \underbrace{ \text{eliminate } \theta_1 } & \dots \\ c' - 1 - 3 * \theta_1 \geq 0 & 3 * 0 \leq c' - 1 \\ 0 \leq \theta'_2 & 3 * (5 - \theta'_2) \leq c' - 1 \\ 0 \leq \theta'_4 & 3 * (1 - \theta'_4) \leq c' - 1 \end{array}$$

Simple (Relaxed) Cost State Classes

We can split the successor according to which term among 0, 5 − θ'₂, and 1 − θ'₄ is the greatest: this always gives DBMs with exactly one lower bound inequality on cost (→ simple cost state classes):

⁵Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209-225, 2016.

Didier Lime (ECN, LS2N)

Cost Problems for Parametric Time Petri Nets

⁴ Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en $O(n^2)$ et des temps de chemin en O(mn). TSL, 22(4):435-459, 2003.

Simple (Relaxed) Cost State Classes

We can split the successor according to which term among 0, 5 − θ'₂, and 1 − θ'₄ is the greatest: this always gives DBMs with exactly one lower bound inequality on cost (→ simple cost state classes):

The inequations on non-cost variables can be directly computed as usual ^{4 5}

⁴ Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en $O(n^2)$ et des temps de chemin en O(mn). *TSl.*, 22(4):435–459, 2003. ⁵ Bourdil et al. Symmetry reduction for time Petri net state classes. *Science of Computer Programming*, 132:209–225, 2016.

Didier Lime (ECN, LS2N)

Simple (Relaxed) Cost State Classes

We can split the successor according to which term among 0, 5 − θ'₂, and 1 − θ'₄ is the greatest: this always gives DBMs with exactly one lower bound inequality on cost (→ simple cost state classes):

The inequations on non-cost variables can be directly computed as usual ^{4 5}
Eliminating disabled variables other than the fired transition can be done similarly.

⁵Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209-225, 2016.

Didier Lime (ECN, LS2N)

⁴ Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en $O(n^2)$ et des temps de chemin en O(mn). TSI., 22(4):435–459, 2003.

Deciding Subsumption for Simple Cost State Classes

- ▶ To decide if $(m, D, c \ge \ell(\vec{\theta})) \preccurlyeq (m', D', c \ge \ell'(\vec{\theta}))$, we can check if ⁶:
 - 1. m = m';
 - 2. $D \subseteq D'$ (**DBM** inclusion);
 - 3. $\inf_{\vec{\theta} \in D} (\ell \ell')(\vec{\theta}) \geq 0$
- Minimization over a DBM can be done efficiently as an instance of the mincost flow graph problem⁶.

 $^{^{6}}$ Rasmussen et al. On using priced timed automata to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

We can use the symbolic algorithm with simple cost state classes: if (m', D') is a successor of (m, D) and D can be decomposed as $\{D'_1, \ldots, D'_n\}$ as before then each of the (m', D'_i) is a successor of (m, D)

Lemma

Termination for Normal Cost State Classes

Lemma

 \succ is a well quasi-order on cost state classes.

1. \succ is actually a **better quasi-order** on simple cost state classes;

 $^{^7\}mathrm{Abdulla}$ and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.

Termination for Normal Cost State Classes

Lemma

- 1. \succ is actually a **better quasi-order** on simple cost state classes;
- 2. Therefore \supseteq such that $X \supseteq Y$ iff $\forall y \in Y, \exists x \in X$ such that $x \succcurlyeq y$ is a better quasi-order⁷;

 $^{^7}$ Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In *LICS*, 2000.

Termination for Normal Cost State Classes

Lemma

- 1. \succ is actually a **better quasi-order** on simple cost state classes;
- 2. Therefore \supseteq such that $X \supseteq Y$ iff $\forall y \in Y, \exists x \in X$ such that $x \succcurlyeq y$ is a better quasi-order⁷;
- 3. A relaxed cost state class is a union of simple cost state classes;

 $^{^7}$ Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In *LICS*, 2000.

Termination for Normal Cost State Classes

Lemma

- 1. \succ is actually a **better quasi-order** on simple cost state classes;
- 2. Therefore \supseteq such that $X \supseteq Y$ iff $\forall y \in Y, \exists x \in X$ such that $x \succcurlyeq y$ is a better quasi-order⁷;
- 3. A relaxed cost state class is a union of simple cost state classes;
- 4. \supseteq implies \supseteq , implies \succ for relaxed classes.

⁷Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In *LICS*, 2000.

Meeting optimally across the river

Waiting time

(becking property mincest (C10) + C1(1) → 2 or C2(0) + C2(1) → 2 or C3(0) + C3(1) → 2 or C4(0) + C4(1) → 2 or C5(0) + C5(1) → 2 or C6(0) + C5(1) → 2 or C6(

Trace: go36_1, go45_0, d45_0, go56_0, d56_0, go65_0, d65_0, go56_0, d56_0, go55_0, d65_0, go56_0, d56_0, d56_1

Global time

(bdecking property minost ([10] + (11]) = 2 or (20] + (21]) = 2 or (20] + (31] = 2 or (40] + (41] = 2 or (50) + (51] = 2 or (50) + (61] = 2) on TW: /work/diselector/process - 8.3/westing:-apprancest.ami Multing for response (kill the romeo-cli process to interrupt)... = 27 Trace: qa56 1, qo45 0, d45 0, qo56 0, d56 0, qo65 0, d56 0, qo56 0, d56 0, qo56 0, d56 0, d56 1

Can we do better? Meeting optimally and parametrically

Let b be the maximum time they accept to wait in a city;

They can accept to go more slowly (except on the river) by a common factor a;

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N)

Cost Problems for Parametric Time Petri Nets

Parametric Cost Time Petri Nets

Parametric Time Petri Nets

Didier Lime (ECN, LS2N)

Cost Problems for Parametric Time Petri Nets
Parametric Bounded-Cost Problems

- **Existential problem**: given c_{max} and a marking *m*, does there exist a value of the parameters such that *m* is reachable with cost less or equal to c_{max} .
- **Bounded-cost Synthesis problem**: find all such parameter values.
- Infcost problem: What is the infimum cost we can achieve over all parameter values?
- Infcost synthesis problem: find all parameter values for which the infimum cost (over all parameter values) can be achieved.

Undecidability of the existential problem

Theorem

The existential problem is undecidable for bounded parametric time Petri nets.

Encode the halting problem of two-counter machines in the existential problem for **time bounded** reachability.

- Start from an encoding for reachability in Parametric Timed Automata⁸
- Adapt to time Petri nets;
- ▶ Make all instructions execute in *b* time units instead of 1.

 $^{8}\mathrm{Andr\acute{e}}$ et al. Decision problems for parametric timed automata. In ICFEM, 2016.

Didier Lime (ECN, LS2N)

Parametric Cost State Classes

- We can compute state classes as before;
- The polyhedra obtained are parametric DBMs plus cost inequalities;
- Instantiating parameters with integer (or rational) values gives again a cost state class;
- Class subsumption is extended naturally: subsumed if subsumed for all parameter valuations.

 $\begin{array}{l} \mbox{Eliminate disabled:} \\ \theta_2' \in [1, 6] \\ \theta_4' \in [\mathbf{a} - \mathbf{4}, \mathbf{b}] \\ \theta_4' \geq 0 \\ \theta_2' - \theta_4' \in [\mathbf{5} - \mathbf{b}, \mathbf{6} - \mathbf{a}] \\ \mathbf{0} \leq \mathbf{a} \leq \mathbf{b} \\ c \geq 16 - 3\theta_2' \\ c \geq 3(\mathbf{a} - \theta_4') + 1 \\ c \geq 1 \end{array}$

Didier Lime (ECN, LS2N)

Cost Problems for Parametric Time Petri Nets

SynCoP'22

$$\begin{array}{l} \text{Eliminate disabled:} \\ \theta_2' \in [1, 6] \\ \theta_4' \in [\mathbf{a} - \mathbf{4}, \mathbf{b}] \\ \theta_4' \geq 0 \\ \theta_2' - \theta_4' \in [\mathbf{5} - \mathbf{b}, \mathbf{6} - \mathbf{a}] \\ \mathbf{0} \leq \mathbf{a} \leq \mathbf{b} \\ c \geq 16 - 3\theta_2' \\ c \geq 3(\mathbf{a} - \theta_4') + 1 \\ c \geq 1 \end{array}$$

Add newly enabled:

. . .

 $\theta_3 \in [3, 4]$

Symbolic Semi-algorithm for Bounded-Cost Reachability

- 1: PolyRes $\leftarrow \emptyset$
- 2: Passed $\leftarrow \emptyset$
- 3: WAITING $\leftarrow \{(m_0, D_0)\}$
- 4: while WAITING $\neq \emptyset$ do
- 5: select $C_{\sigma} = (m, D)$ from WAITING
- 6: **if** $m \in \text{Goal then}$
- 7: PolyRes \leftarrow PolyRes $\cup (\mathbf{D} \cap (\mathbf{c} \leq \mathbf{c}_{\max}))_{\mathbb{IP}}$
- 8: end if
- 9: **if** for all $C' \in \text{PASSED}, C_{\sigma} \not\preccurlyeq C'$ then
- 10: add C_{σ} to PASSED
- 11: for all $t \in \text{firable}(C_{\sigma})$, add $C_{\sigma,t}$ to WAITING
- 12: end if
- 13: end while
- 14: return PolyRes

Symbolic Semi-algorithm for Infcost Reachability

- 1: COST $\leftarrow \infty$ 2: PolyRes $\leftarrow \emptyset$
- $\textbf{3:} \ \textbf{Passed} \leftarrow \emptyset$
- 4: WAITING $\leftarrow \{(m_0, D_0)\}$
- 5: while WAITING $\neq \emptyset$ do
- 6: select $C_{\sigma} = (m, D)$ from WAITING
- 7: if $m \in \text{Goal then}$
- 8: **if** $cost(C_{\sigma}) < Cost$ **then**
- 9: $\operatorname{Cost} \leftarrow \operatorname{cost}(C_{\sigma})$
- 10: $\operatorname{PolyRes} \leftarrow \left(\mathsf{D} \cap (\mathsf{c} = \operatorname{Cost}) \right)_{|\mathbb{P}}$
- 11: else if $cost(C_{\sigma}) = COST$ then

```
12: PolyRes \leftarrow PolyRes \cup (\mathbf{D} \cap (\mathbf{c} = \text{Cost}))_{|\mathbb{P}|}
```

- 13: end if
- 14: end if
- 15: if for all $C' \in \text{PASSED}, C_{\sigma} \not\preccurlyeq C'$ then
- 16: add C_{σ} to PASSED
- 17: for all $t \in \text{firable}(C_{\sigma})$, add $C_{\sigma,t}$ to WAITING
- 18: end if
- 19: end while
- 20: return (COST, PolyRes)

Symbolic Parameter Synthesis Algorithms

When they terminate, the previous algorithms are sound and complete:

Lemma

For all classes $C_{\sigma} = (m, D)$, $(\vec{\theta}, c, v) \in D$ if and only if there exists a run ρ in $v(\mathcal{N})$, and $I : en(m) \to \mathcal{I}(\mathbb{Q}_{\geq 0})$, such that $equence(\rho) = \sigma$, $(m, I, c) = last(\rho)$, and $\vec{\theta} \in I$.

Lemma

Let C_{σ_1} and C_{σ_2} be two state classes such that $C_{\sigma_1} \preccurlyeq C_{\sigma_2}$. If a transition sequence σ is firable from C_{σ_1} , it is also firable from C_{σ_2} and $\cot(C_{\sigma_1,\sigma}) \ge \cot(C_{\sigma_2,\sigma})$.

Termination is not guaranteed;

Integer hull

We use the **integer hull** trick⁹ to:

- 1. make them compute integer parameter valuations;
- 2. ensure termination when parameters are **bounded**.

Didier Lime (ECN, LS2N)

⁹ Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.

Integer hull

We use the **integer hull** trick⁹ to:

- 1. make them compute integer parameter valuations;
- 2. ensure termination when parameters are **bounded**.

Didier Lime (ECN, LS2N)

⁹ Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int *IEEE trans. on soft. eng.*, 41(5):445–461, 2015.

Integer hull

We use the **integer hull** trick⁹ to:

- 1. make them compute integer parameter valuations;
- 2. ensure termination when parameters are **bounded**.

Didier Lime (ECN, LS2N)

⁹ Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.

Integer Parameter Synthesis for Bounded-Cost Reachability

- 1: PolyRes $\leftarrow \emptyset$
- 2: Passed $\leftarrow \emptyset$
- 3: WAITING $\leftarrow \{(m_0, D_0)\}$
- 4: while WAITING $\neq \emptyset$ do
- 5: select $C_{\sigma} = (m, D)$ from WAITING
- 6: **if** $m \in \text{Goal then}$
- 7: PolyRes \leftarrow PolyRes $\cup (\mathsf{IH}(D) \cap (c \leq c_{\max}))_{|\mathbb{P}|}$
- 8: end if
- 9: **if** for all $C' \in \text{PASSED}$, $H(C_{\sigma}) \not\preccurlyeq H(C')$ then
- 10: add C_{σ} to PASSED
- 11: for all $t \in firable(IH(C_{\sigma}))$, add $C_{\sigma,t}$ to WAITING
- 12: end if
- 13: end while
- 14: return PolyRes

Integer Parameter Synthesis for Infcost Reachability

```
1. COST \leftarrow \infty
 2: PolyRes \leftarrow \emptyset
 3. Passed \leftarrow \emptyset
 4: WAITING \leftarrow \{(m_0, D_0)\}
 5: while WAITING \neq \emptyset do
         select C_{\sigma} = (m, D) from WAITING
 6:
        if m \in \text{Goal then}
 7:
 8:
            if cost(IH(C_{\sigma})) < Cost then
 9:
                COST \leftarrow cost(IH(C_{\sigma}))
                \mathsf{PolyRes} \leftarrow \big(\mathsf{IH}(D) \cap (c = \mathrm{Cost})\big)_{\mathsf{IP}}
10:
            else if cost(IH(C_{\sigma})) = Cost then
11:
                PolyRes \leftarrow PolyRes \cup (IH(D) \cap (c = COST))
12:
            end if
13:
         end if
14:
        if for all C' \in \text{PASSED}, |H(C_{\sigma}) \not\preccurlyeq |H(C') then
15:
            add C_{\sigma} to PASSED
16:
            for all t \in \text{firable}(\mathsf{IH}(C_{\sigma})), add C_{\sigma,t} to WAITING
17.
18.
         end if
19: end while
20: return (COST, PolyRes)
```

Integer Parameter Synthesis

When they terminate, the previous algorithms are sound and complete for integer parameter valuations;

Lemma

If v is an integer parameter valuation, then for all classes $C_{\sigma} = (m, D)$, $(\vec{\theta}, c, v) \in IH(D)$ if and only if there exists a run ρ in $v(\mathcal{N})$, and $I : en(m) \rightarrow \mathcal{I}(\mathbb{Q}_{\geq 0})$, such that $sequence(\rho) = \sigma$, $(m, I, c) = last(\rho)$, and $\vec{\theta} \in I$.

Lemma

Let C_{σ_1} and C_{σ_2} be two state classes such that $H(C_{\sigma_1}) \preccurlyeq H(C_{\sigma_2})$. If a transition sequence σ is $\mathbb{N}^{\mathbb{P}}$ -firable from C_{σ_1} it is also $\mathbb{N}^{\mathbb{P}}$ -firable from C_{σ_2} and $\operatorname{cost}_{\mathbb{N}}(C_{\sigma_1.\sigma}) \ge \operatorname{cost}_{\mathbb{N}}(C_{\sigma_2.\sigma})$.

- Termination is still not guaranteed, except when parameters are bounded;
- When parameters are bounded, ≽ is again a well-quasiorder;
- ▶ Integer hull can also be computed as part of the successor class computation.

Meeting parametrically across the river

Meeting parametrically across the river

Infcost

Checking property mincost (C1(8) + C1(1) = 2 or C2(8) + C2(1) = 2 or C3(8) + C3(1) = 2 or C4(8) + C4(1) = 2 or C5(8) + C5(1) = 2 or C6(8) + C6(1) = 2) on TPN; /home/did/Desktop/romeo-3.8.6/meeting-simple2.xml Maiting for response (kill the romeo-cli process to interrupt)... [warning] Real-valued parameters: no (theoretical) termination guarantee in CTS file: /home/did/.romeo/temp/ctsfile.cts =23 a in [1, 20/17] b in [0, 10] 17*a + 3*b >= 28 a in [1, 5/2] b in [0, 10] 8*a + 3*b >= 28 Traces: -> go41_0, go32_1, d32_1, go21_1, d41_0, d21_1 -> go45 8, go36 1, d45 8, go56 8, d56 8, d36 1 -> go32 1, go41 0, d32 1, go21 1, d41 0, d21 -> go32 1, go41 0, d32 1, go21 1, d21 1, d41 0 -> go41_0, go32_1, d32_1, go21_1, d21_1, d41_0 -> go41_0, go32_1, d32_1, go21_1, d21_1, d41_0 -> go45_0, go36_1, d45_0, go56_0, d36_0, d36_1 -> go45_0, go36_1, d45_0, go56_0, d36_1, d56_0 -> g036 1, g045 0, d45 0, g056 0, d36 1, d56 0

Bounded cost ≤ 25 (Incling property IF (ICI(0) + CI(1) = 2 or CI(0) + Naiting for response (kill the romeo-cli process to interrupt). [warning] Real-valued parameters: no (theoretical) termination guarantee in CTS file: /home/did/.romeo/temp/ctsfile.cts a in [1, 10/7] b in [0, 12/3] 14*a + 5*b >= 28 8*a + 3*b < 20 a in [1, 10/9] b in [0, 3/3] 18*a + 5*b >= 28 17*a + 3*b < 20 a in [1, 140/113] b in [0, 6/5] 14*a + 5*b < 20 -17*a + 2*b >= -20 17*a + 3*b >= 28 a in [1, 11/4] b in [0, 10] 8*a + 3*b >= 20

-4*a * b >= -10

Integer hull and Performance

- Computing the integer hull is expensive:
- In all previous examples real parameters terminate, and faster;

Integer hull and Performance

- Computing the integer hull is expensive:
- In all previous examples real parameters terminate, and faster;
- The integer hull can cut a lot of paths off:
- ▶ By setting discrete costs to 0, with $a \le 10, b = 0$ and a bounded cost of 40, IH terminates in 3s, Real in 55s.

Conclusion

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Conclusion and Perspective

- Summary:
 - Using state classes we can solve the optimal cost reachability problem for bounded TPNs;
 - With state classes we need no extrapolation to ensure termination;
 - We can directly compute costs using polyhedra or using DBMs, through state class splitting;
 - The polyhedra approach can be extended for parameter synthesis in bounded-cost and inf-cost reachability;
 - The integer hull trick allows for terminating symbolic algorithms for bounded integer parameters;
 - The techniques are implemented in the freely available Roméo tool.

Conclusion and Perspective

- Summary:
 - Using state classes we can solve the optimal cost reachability problem for bounded TPNs;
 - With state classes we need **no extrapolation** to ensure termination;
 - We can directly compute costs using polyhedra or using DBMs, through state class splitting;
 - The polyhedra approach can be extended for parameter synthesis in bounded-cost and inf-cost reachability;
 - The integer hull trick allows for terminating symbolic algorithms for bounded integer parameters;
 - The techniques are implemented in the freely available Roméo tool.

Future work:

- Optimal cost as a function of parameters;
- Parameter synthesis in parametric cost timed models;
- Integer hull for undecidable non-parametric cost problems (control, upper bound "hard" constraints).