
Cost Problems for Parametric Time Petri Nets

Hanifa Boucheneb1 Didier Lime2 Olivier H. Roux2 Charlotte Seidner2

1École Polytechnique de Montréal, Québec, Canada
2Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

SynCoP’22
2nd of April 2022, Munich, Germany

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 1 / 44



Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 2 / 44



Introduction

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 3 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...

They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...

They won’t wait!

Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Introduction

Meeting across the river

C1 C2 C3

C4 C5 C6

7 10

5 3

20 20 20

But that’s not how it ended...They won’t wait!

Is all hope lost?

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 4 / 44



Time Petri Nets and State Classes

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 5 / 44



Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 6 / 44



Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 6 / 44



Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 6 / 44



Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 6 / 44



Time Petri Nets and State Classes

Time Petri Nets

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

t1 ∈ [0, 4]
t2 ∈ [5, 6]

1.4−−→ t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]

t1−→ t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]

3.6−−→ t2 ∈ [0, 1]
t3 ∈ [0, 0.4]

t3−→ ⊥

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 6 / 44



Time Petri Nets and State Classes

State Classes1

I A state class Cσ is the (collapsed) set of states obtained by the transition
sequence σ;

I Those states all share the same marking;
I The union of all points in the intervals in the valuations on the transitions

can be represented by a convex polyhedron (encoded by a Difference Bound
Matrix, DBM);

I A state class is thus a pair C = (m,D), where m is a marking, and D a DBM.

1Berthomieu and Diaz. Modeling and verification of time dependent systems using time Petri nets. IEEE trans. on soft. eng., 17(3):259–273, 1991.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 7 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 8 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 8 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 8 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 8 / 44



Time Petri Nets and State Classes

State Class Computation

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 8 / 44



Time Petri Nets and State Classes

Meeting across the river

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 9 / 44



Time Petri Nets and State Classes

Meeting optimally across the river

What is an optimal (common) strategy to meet?

I Pay 1 for each move;
I Pay 1 for each time unit they wait

I either while being idle in a city
I or globally until they meet

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 10 / 44



Costs in Time Petri Nets

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 11 / 44



Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 12 / 44



Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 12 / 44



Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 12 / 44



Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 12 / 44



Costs in Time Petri Nets

Cost Time Petri Nets
p1 p2

t1[0, 4]
ω = 1

t2[5, 6]
ω = 0

p3 p4

t3[3, 4]
ω = 2

p5 cr = p1 + 2p2

t1 ∈ [0, 4]
t2 ∈ [5, 6]
cost = 0

1.4−−→
t1 ∈ [0, 2.6]
t2 ∈ [3.6, 4.6]
cost = (1 + 2) ∗ 1.4 = 4.2

t1−→
t2 ∈ [3.6, 4.6]
t3 ∈ [3, 4]
cost = 4.2 + 1 = 5.2

3.6−−→
t2 ∈ [0, 1]
t3 ∈ [0, 0.4]
cost = 5.2 + 2 ∗ 3.6 = 12.4

t3−→ ⊥
cost = 12.4 + 2 = 14.4

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 12 / 44



Costs in Time Petri Nets

The min/inf-cost Reachability Problem

Inf-cost reachability
Given a Cost-TPN N and a set of markings Goal, decide if Goal is reachable and
if so compute:

inf
ρ s.t. last(ρ)∈Goal

cost(ρ)

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 13 / 44



Costs in Time Petri Nets

Symbolic Algorithm for Inf-cost Reachability 23

1: Cost←∞
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal and cost(Cσ) < Cost then
7: Cost← cost(Cσ)
8: end if
9: if for all C ′ ∈ Passed,Cσ 64C ′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return Cost

2Larsen et al. As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV’01, 2001.
3Rasmussen et al. On using priced timed automata to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 14 / 44



Costs in Time Petri Nets

Cost State Classes

I From a transition sequence σ, we want to compute cost(σ) the inf-cost of all
runs built on σ

I We extend state class firing domains with a new variable c:
⇒ Cost state classes: Cσ = (m,D)

I When firing ti , c changes by ω(ti) + θi ∗ cr(m)

I An extended firing domain D is not a DBM anymore but still a convex
polyhedron;

I cost(σ) = cost(Cσ) = inf(~θ,c)∈D c computable using linear programming.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 15 / 44



Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 16 / 44



Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 16 / 44



Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 16 / 44



Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 16 / 44



Costs in Time Petri Nets

Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[1, 2]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [1, 2]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [3, 6]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3θ′2
c ≥ 4− 3θ′4
c ≥ 1

Add newly enabled:
θ′2 ∈ [3, 6]
θ3 ∈ [3, 4]
θ′4 ∈ [0, 2]
θ′2 − θ′4 ∈ [3, 5]
c ≥ 16− 3t′2
c ≥ 4− 3t′4
c ≥ 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 16 / 44



Costs in Time Petri Nets

Cost State Class Subsumption: 4

θ

c

<

θ

c

Can be checked with linear programming

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 17 / 44



Costs in Time Petri Nets

Cost State Class Subsumption: 4

θ

c

<

θ

c

Can be checked with linear programming

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 17 / 44



Costs in Time Petri Nets

Cost State Class Subsumption: 4

θ

c

<

θ

c

Can be checked with linear programming

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 17 / 44



Costs in Time Petri Nets

Relaxing Cost State Classes

θ

c

⊇

θ

c

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 18 / 44



Costs in Time Petri Nets

Relaxing Cost State Classes

θ

c

⊇

θ

c

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 18 / 44



Costs in Time Petri Nets

Relaxing Cost State Classes

θ

c

⊇

θ

c

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 18 / 44



Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I The computation of cost state classes relies on general convex polyhedra;
I Can we also do it only with DBMs (like for Timed Automata)?
I We need to closely examine the variable elimination in the successor

computation;

I It can be done by the Fourier-Motzkin algorithm: to eliminate θ1 just write
that all lower bounds of θ1 are less than all upper bounds of θ1:

θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c ′ − 1− 3 ∗ θ1 ≥ 0
0 ≤ θ′2
0 ≤ θ′4

eliminate θ1−−−−−−−→

0 ≤ 4
0 ≤ 6− θ′2
. . .
3 ∗ 0 ≤ c ′ − 1
3 ∗ (5− θ′2) ≤ c ′ − 1
3 ∗ (1− θ′4) ≤ c ′ − 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 19 / 44



Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I The computation of cost state classes relies on general convex polyhedra;
I Can we also do it only with DBMs (like for Timed Automata)?
I We need to closely examine the variable elimination in the successor

computation;
I It can be done by the Fourier-Motzkin algorithm: to eliminate θ1 just write

that all lower bounds of θ1 are less than all upper bounds of θ1:

θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [1, 2]
c ′ − 1− 3 ∗ θ1 ≥ 0
0 ≤ θ′2
0 ≤ θ′4

eliminate θ1−−−−−−−→

0 ≤ 4
0 ≤ 6− θ′2
. . .
3 ∗ 0 ≤ c ′ − 1
3 ∗ (5− θ′2) ≤ c ′ − 1
3 ∗ (1− θ′4) ≤ c ′ − 1

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 19 / 44



Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I We can split the successor according to which term among 0, 5− θ′2, and
1− θ′4 is the greatest: this always gives DBMs with exactly one lower bound
inequality on cost (→ simple cost state classes):

. . . . . . . . .
0 ≥ 5− θ′2 or 5− θ′2 ≥ 0 or 1− θ′4 ≥ 0
0 ≥ 1− θ′4 5− θ′2 ≥ 1− θ′4 1− θ′4 ≥ 5− θ′2
c ′ ≥ 1 c ′ ≥ 16− 3θ′2 c ′ ≥ 4− 3θ′4

I The inequations on non-cost variables can be directly computed as usual 4 5

I Eliminating disabled variables other than the fired transition can be done
similarly.

4Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en O(n2) et des temps de chemin en O(mn). TSI., 22(4):435–459, 2003.
5Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209–225, 2016.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 20 / 44



Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I We can split the successor according to which term among 0, 5− θ′2, and
1− θ′4 is the greatest: this always gives DBMs with exactly one lower bound
inequality on cost (→ simple cost state classes):

. . . . . . . . .
0 ≥ 5− θ′2 or 5− θ′2 ≥ 0 or 1− θ′4 ≥ 0
0 ≥ 1− θ′4 5− θ′2 ≥ 1− θ′4 1− θ′4 ≥ 5− θ′2
c ′ ≥ 1 c ′ ≥ 16− 3θ′2 c ′ ≥ 4− 3θ′4

I The inequations on non-cost variables can be directly computed as usual 4 5

I Eliminating disabled variables other than the fired transition can be done
similarly.

4Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en O(n2) et des temps de chemin en O(mn). TSI., 22(4):435–459, 2003.
5Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209–225, 2016.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 20 / 44



Costs in Time Petri Nets

Simple (Relaxed) Cost State Classes

I We can split the successor according to which term among 0, 5− θ′2, and
1− θ′4 is the greatest: this always gives DBMs with exactly one lower bound
inequality on cost (→ simple cost state classes):

. . . . . . . . .
0 ≥ 5− θ′2 or 5− θ′2 ≥ 0 or 1− θ′4 ≥ 0
0 ≥ 1− θ′4 5− θ′2 ≥ 1− θ′4 1− θ′4 ≥ 5− θ′2
c ′ ≥ 1 c ′ ≥ 16− 3θ′2 c ′ ≥ 4− 3θ′4

I The inequations on non-cost variables can be directly computed as usual 4 5

I Eliminating disabled variables other than the fired transition can be done
similarly.

4Boucheneb and Mullins. Analyse des réseaux temporels : Calcul des classes en O(n2) et des temps de chemin en O(mn). TSI., 22(4):435–459, 2003.
5Bourdil et al. Symmetry reduction for time Petri net state classes. Science of Computer Programming, 132:209–225, 2016.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 20 / 44



Costs in Time Petri Nets

Deciding Subsumption for Simple Cost State Classes

I To decide if (m,D, c ≥ `(~θ)) 4 (m′,D ′, c ≥ `′(~θ)), we can check if 6:
1. m = m′;
2. D ⊆ D ′ (DBM inclusion);
3. inf~θ∈D(`− `′)(~θ) ≥ 0

I Minimization over a DBM can be done efficiently as an instance of the
mincost flow graph problem6.

6Rasmussen et al. On using priced timed automata to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 21 / 44



Termination of the Infcost Algorithm

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 22 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Simple Cost State Classes
We can use the symbolic algorithm with simple cost state classes: if (m′,D ′) is a
successor of (m,D) and D can be decomposed as {D ′

1, . . . ,D ′
n} as before then

each of the (m′,D ′
i ) is a successor of (m,D)

Lemma
< is a well quasi-order on simple cost state classes.

θ

c

∈ N2

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 23 / 44



Termination of the Infcost Algorithm

Termination for Normal Cost State Classes

Lemma
< is a well quasi-order on cost state classes.

1. < is actually a better quasi-order on simple cost state classes;

2. Therefore w such that X w Y iff ∀y ∈ Y ,∃x ∈ X such that x < y is a better
quasi-order7;

3. A relaxed cost state class is a union of simple cost state classes;
4. w implies ⊇, implies < for relaxed classes.

7Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 24 / 44



Termination of the Infcost Algorithm

Termination for Normal Cost State Classes

Lemma
< is a well quasi-order on cost state classes.

1. < is actually a better quasi-order on simple cost state classes;
2. Therefore w such that X w Y iff ∀y ∈ Y ,∃x ∈ X such that x < y is a better

quasi-order7;

3. A relaxed cost state class is a union of simple cost state classes;
4. w implies ⊇, implies < for relaxed classes.

7Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 24 / 44



Termination of the Infcost Algorithm

Termination for Normal Cost State Classes

Lemma
< is a well quasi-order on cost state classes.

1. < is actually a better quasi-order on simple cost state classes;
2. Therefore w such that X w Y iff ∀y ∈ Y ,∃x ∈ X such that x < y is a better

quasi-order7;
3. A relaxed cost state class is a union of simple cost state classes;

4. w implies ⊇, implies < for relaxed classes.

7Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 24 / 44



Termination of the Infcost Algorithm

Termination for Normal Cost State Classes

Lemma
< is a well quasi-order on cost state classes.

1. < is actually a better quasi-order on simple cost state classes;
2. Therefore w such that X w Y iff ∀y ∈ Y ,∃x ∈ X such that x < y is a better

quasi-order7;
3. A relaxed cost state class is a union of simple cost state classes;
4. w implies ⊇, implies < for relaxed classes.

7Abdulla and Nylén. Better is better than well: On efficient verification of infinite-state systems. In LICS, 2000.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 24 / 44



Termination of the Infcost Algorithm

Meeting optimally across the river

Waiting time

Global time

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 25 / 44



Termination of the Infcost Algorithm

Can we do better? Meeting optimally and parametrically

C1(b) C2(b) C3(b)

C4(b) C5(b) C6(b)

7a 10a

5a 3a

20 20 20

I Let b be the maximum time they accept to wait in a city;
I They can accept to go more slowly (except on the river) by a common factor

a;

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 26 / 44



Parametric Cost Time Petri Nets

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 27 / 44



Parametric Cost Time Petri Nets

Parametric Time Petri Nets

p1 p2

t1[0, a] t2[b, 6]

p3 p4

t3[a, 4]

p5

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 28 / 44



Parametric Cost Time Petri Nets

Parametric Bounded-Cost Problems

I Existential problem: given cmax and a marking m, does there exist a value
of the parameters such that m is reachable with cost less or equal to cmax.

I Bounded-cost Synthesis problem: find all such parameter values.
I Infcost problem: What is the infimum cost we can achieve over all

parameter values?
I Infcost synthesis problem: find all parameter values for which the infimum

cost (over all parameter values) can be achieved.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 29 / 44



Parametric Cost Time Petri Nets

Undecidability of the existential problem
Theorem
The existential problem is undecidable for bounded parametric time Petri nets.

Encode the halting problem of two-counter machines in the existential problem for
time bounded reachability.
I Start from an encoding for reachability in Parametric Timed Automata8

I Adapt to time Petri nets;
I Make all instructions execute in b time units instead of 1.

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

Px Py

okx oky

sj

εz0

[0, 0]
tz=b
[b, b]

εzb

[0, 0]
tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

done [0, 0]

8André et al. Decision problems for parametric timed automata. In ICFEM, 2016.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 30 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes

I We can compute state classes as before;
I The polyhedra obtained are parametric DBMs plus cost inequalities;
I Instantiating parameters with integer (or rational) values gives again a cost

state class;
I Class subsumption is extended naturally: subsumed if subsumed for all

parameter valuations.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 31 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 32 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 32 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 32 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 32 / 44



Parametric Cost Time Petri Nets

Parametric Cost State Classes: Example

p1 p2

t1[0, 4] t2[5, 6]

p3 p4

t3[3, 4]

p5

p6

t4[a, b]

cr = p1 + 2p2
ω(t1) = 1

Initially:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0

Fire t1:
θ1 ∈ [0, 4]
θ2 ∈ [5, 6]
θ4 ∈ [a, b]
c ≥ 0
θ1 ≤ θ2
θ1 ≤ θ4

Change origin:
θ1 ∈ [0, 4]
θ′2 + θ1 ∈ [5, 6]
θ′4 + θ1 ∈ [a, b]
c ′ − ω(t1)− cr(m0) ∗ θ1 ≥ 0
θ1 ≤ θ′2 + θ1
θ1 ≤ θ′4 + θ1

Eliminate disabled:
θ′2 ∈ [1, 6]
θ′4 ∈ [a− 4, b]
θ′4 ≥ 0
θ′2 − θ′4 ∈ [5− b, 6− a]
0 ≤ a ≤ b
c ≥ 16− 3θ′2
c ≥ 3(a− θ′4) + 1
c ≥ 1

Add newly enabled:
. . .
θ3 ∈ [3, 4]
. . .

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 32 / 44



Parametric Cost Time Petri Nets

Symbolic Semi-algorithm for Bounded-Cost Reachability

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
D ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ Passed,Cσ 64 C ′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 33 / 44



Parametric Cost Time Petri Nets

Symbolic Semi-algorithm for Infcost Reachability
1: Cost←∞
2: PolyRes← ∅
3: Passed← ∅
4: Waiting← {(m0,D0)}
5: while Waiting 6= ∅ do
6: select Cσ = (m,D) from Waiting
7: if m ∈ Goal then
8: if cost(Cσ) < Cost then
9: Cost← cost(Cσ)

10: PolyRes←
(
D ∩ (c = Cost)

)
|P

11: else if cost(Cσ) = Cost then
12: PolyRes← PolyRes ∪

(
D ∩ (c = Cost)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ Passed,Cσ 64 C ′ then
16: add Cσ to Passed
17: for all t ∈ firable(Cσ), add Cσ.t to Waiting
18: end if
19: end while
20: return (Cost,PolyRes)

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 34 / 44



Parametric Cost Time Petri Nets

Symbolic Parameter Synthesis Algorithms

I When they terminate, the previous algorithms are sound and complete:

Lemma
For all classes Cσ = (m,D), (~θ, c, v) ∈ D if and only if there exists a run ρ in
v(N ), and I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ),
and ~θ ∈ I.

Lemma
Let Cσ1 and Cσ2 be two state classes such that Cσ1 4 Cσ2 .
If a transition sequence σ is firable from Cσ1 , it is also firable from Cσ2 and
cost(Cσ1.σ) ≥ cost(Cσ2.σ).

I Termination is not guaranteed;

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 35 / 44



Parametric Cost Time Petri Nets

Integer hull

We use the integer hull trick9 to:
1. make them compute integer parameter valuations;
2. ensure termination when parameters are bounded.

y

x

9Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 36 / 44



Parametric Cost Time Petri Nets

Integer hull

We use the integer hull trick9 to:
1. make them compute integer parameter valuations;
2. ensure termination when parameters are bounded.

y

x

9Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 36 / 44



Parametric Cost Time Petri Nets

Integer hull

We use the integer hull trick9 to:
1. make them compute integer parameter valuations;
2. ensure termination when parameters are bounded.

y

x

9Jovanović et al. Integer Parameter Synthesis for Real-Time Systems. Int IEEE trans. on soft. eng., 41(5):445–461, 2015.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 36 / 44



Parametric Cost Time Petri Nets

Integer Parameter Synthesis for Bounded-Cost Reachability

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0,D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
IH(D) ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ Passed, IH(Cσ) 64 IH(C ′) then

10: add Cσ to Passed
11: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 37 / 44



Parametric Cost Time Petri Nets

Integer Parameter Synthesis for Infcost Reachability
1: Cost←∞
2: PolyRes← ∅
3: Passed← ∅
4: Waiting← {(m0,D0)}
5: while Waiting 6= ∅ do
6: select Cσ = (m,D) from Waiting
7: if m ∈ Goal then
8: if cost(IH(Cσ)) < Cost then
9: Cost← cost(IH(Cσ))

10: PolyRes←
(
IH(D) ∩ (c = Cost)

)
|P

11: else if cost(IH(Cσ)) = Cost then
12: PolyRes← PolyRes ∪

(
IH(D) ∩ (c = Cost)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ Passed, IH(Cσ) 64 IH(C ′) then
16: add Cσ to Passed
17: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
18: end if
19: end while
20: return (Cost,PolyRes)

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 38 / 44



Parametric Cost Time Petri Nets

Integer Parameter Synthesis
I When they terminate, the previous algorithms are sound and complete for

integer parameter valuations;

Lemma
If v is an integer parameter valuation, then for all classes Cσ = (m,D),
(~θ, c, v) ∈ IH(D) if and only if there exists a run ρ in v(N ), and
I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ), and ~θ ∈ I.

Lemma
Let Cσ1 and Cσ2 be two state classes such that IH(Cσ1) 4 IH(Cσ2).
If a transition sequence σ is NP-firable from Cσ1 it is also NP-firable from Cσ2 and
costN(Cσ1.σ) ≥ costN(Cσ2.σ).

I Termination is still not guaranteed, except when parameters are bounded;
I When parameters are bounded, < is again a well-quasiorder;
I Integer hull can also be computed as part of the successor class computation.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 39 / 44



Parametric Cost Time Petri Nets

Meeting parametrically across the river

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 40 / 44



Parametric Cost Time Petri Nets

Meeting parametrically across the river

Infcost

Bounded cost ≤ 25

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 41 / 44



Parametric Cost Time Petri Nets

Integer hull and Performance

I Computing the integer hull is expensive:
I In all previous examples real parameters terminate, and faster;

I The integer hull can cut a lot of paths off:
I By setting discrete costs to 0, with a ≤ 10, b = 0 and a bounded cost of 40,

IH terminates in 3s, Real in 55s.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 42 / 44



Parametric Cost Time Petri Nets

Integer hull and Performance

I Computing the integer hull is expensive:
I In all previous examples real parameters terminate, and faster;
I The integer hull can cut a lot of paths off:
I By setting discrete costs to 0, with a ≤ 10, b = 0 and a bounded cost of 40,

IH terminates in 3s, Real in 55s.

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 42 / 44



Conclusion

Plan

Introduction

Time Petri Nets and State Classes

Costs in Time Petri Nets

Termination of the Infcost Algorithm

Parametric Cost Time Petri Nets

Conclusion

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 43 / 44



Conclusion

Conclusion and Perspective

I Summary:
I Using state classes we can solve the optimal cost reachability problem for

bounded TPNs;
I With state classes we need no extrapolation to ensure termination;
I We can directly compute costs using polyhedra or using DBMs, through state

class splitting;
I The polyhedra approach can be extended for parameter synthesis in

bounded-cost and inf-cost reachability;
I The integer hull trick allows for terminating symbolic algorithms for bounded

integer parameters;
I The techniques are implemented in the freely available Roméo tool.

I Future work:
I Optimal cost as a function of parameters;
I Parameter synthesis in parametric cost timed models;
I Integer hull for undecidable non-parametric cost problems (control, upper

bound “hard” constraints).

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 44 / 44



Conclusion

Conclusion and Perspective

I Summary:
I Using state classes we can solve the optimal cost reachability problem for

bounded TPNs;
I With state classes we need no extrapolation to ensure termination;
I We can directly compute costs using polyhedra or using DBMs, through state

class splitting;
I The polyhedra approach can be extended for parameter synthesis in

bounded-cost and inf-cost reachability;
I The integer hull trick allows for terminating symbolic algorithms for bounded

integer parameters;
I The techniques are implemented in the freely available Roméo tool.

I Future work:
I Optimal cost as a function of parameters;
I Parameter synthesis in parametric cost timed models;
I Integer hull for undecidable non-parametric cost problems (control, upper

bound “hard” constraints).

Didier Lime (ECN, LS2N) Cost Problems for Parametric Time Petri Nets SynCoP’22 44 / 44


	Introduction
	Time Petri Nets and State Classes
	Costs in Time Petri Nets
	Termination of the Infcost Algorithm
	Parametric Cost Time Petri Nets
	Conclusion

