Formal analysis of crowd systems

Michael Blondin

Université de
Sherbrooke

Formal analysis of crowd systems

Michael Blondin

Joint work with J. Esparza, M. Helfrich, S. Jaax, A. Kučera, P. J. Meyer

Université de Sherbrooke

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Model e.g. networks of passively mobile sensors and chemical reaction networks

Overview

Model e.g. networks of passively mobile sensors and

chemical reaction networks

Protocols compute predicates of the form $\varphi: \mathbb{N}^{d} \rightarrow\{0,1\}$ e.g. $\varphi(m, n)$ is computed by $m+n$ agents

Overview

This talk: automatic verification and expected termination time analysis

Population protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Example: threshold protocol

Are there at least 4 sick birds?

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: majority protocol

\# blue agents \geq \# red agents?

4/13

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

4/13

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Demonstration

Population protocols: formal model

- States:
- Opinions:
- Initial states:
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

finite set Q

$O: Q \rightarrow\{$ false, true $\}$
$I \subseteq Q$

Population protocols: formal model

- States:
finite set Q
- Opinions:
$O: Q \rightarrow\{$ false, true $\}$
- Initial states: $I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states:
- Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states: $\quad I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

Population protocols: interactions

All agents can interact pairwise

 (complete topology)

Population protocols: interactions

$$
\mathbb{P}\left[\text { fire } p, q \mapsto p^{\prime}, q^{\prime} \text { in } C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}
$$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$$
\mathbb{P}\left[\text { fire } p, q \mapsto p^{\prime}, q^{\prime} \text { in } C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}
$$

$$
\mathbb{P}\left[C \rightarrow C^{\prime}\right]=\sum_{t \text { s.t. } C \rightarrow C^{t}} \mathbb{P}[\text { fire } t \text { in } C]
$$

Population protocols: computations

Underlying Markov chain:

Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^{I} \rightarrow\{0,1\}$ if runs reach common stable consensus with probability 1

Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^{\prime} \rightarrow\{0,1\}$ if runs reach common stable consensus with probability 1

Expressive power
Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates definable in Presburger arithmetic, i.e. $\operatorname{FO}(\mathbb{N},+,<)$

Verifying correctness

Protocol broken for $B=R$:
$B R \rightarrow b b$
$B r \rightarrow B b$
$R b \rightarrow R r$

Verifying correctness

Protocol broken for $B=R$:
$B R \rightarrow b b$
$B r \rightarrow B b$
$R b \rightarrow R r$

B R B R

Verifying correctness

Protocol broken for $B=R$:
$B R \rightarrow b b$
$B r \rightarrow B b$
$R b \rightarrow R r$

BRBR \rightarrow B Rbb

Verifying correctness

Protocol broken for $\mathrm{B}=\mathrm{R}$:

$$
\begin{aligned}
& B R \rightarrow b b \\
& B r \rightarrow B b \\
& R b \rightarrow R r
\end{aligned}
$$

$B R B R \rightarrow B R b b \rightarrow R r b$

Verifying correctness

Protocol broken for $\mathrm{B}=\mathrm{R}$:

$$
\begin{aligned}
& B R \rightarrow b b \\
& B r \rightarrow B b \\
& R b \rightarrow R r
\end{aligned}
$$

$B R B R \rightarrow B R b b \rightarrow B R b \rightarrow b b r b$

Verifying correctness

Protocol correct with tie-breaker:

$$
\begin{aligned}
B R & \rightarrow b b \\
B r & \rightarrow B b \\
R b & \rightarrow R r \\
b r & \rightarrow b b
\end{aligned}
$$

$B R B R \rightarrow B R b b \rightarrow B R b \rightarrow b b r b$

Verifying correctness

Protocol correct with tie-breaker:

$$
\begin{aligned}
& \mathrm{BR} \rightarrow \mathrm{~b} b \\
& \mathrm{Br} \rightarrow \mathrm{Bb} \\
& R \mathrm{~b} \rightarrow \mathrm{Rr} \\
& \mathrm{br} \rightarrow \mathrm{~b} b
\end{aligned}
$$

$$
\text { BRBR } \rightarrow \text { BRbb } \rightarrow \text { BRrb } \rightarrow \text { bbrb } \rightarrow \text { bbbb }
$$

Verifying correctness

Easy fix, but protocols can become complex even for $B \geq R$:

Fast and Exact Majority in Population Protocols

```
    Dan Alistarh
Microsoft Research
```

$\underset{\text { MIT }}{\text { Rati Gelashvili }}$

Milan Vojnović Microsoft Research

```
weight (x)={}{\begin{array}{ll}{|x|}&{\mathrm{ if }x\in\mathrm{ StrongStates or }x\in\mathrm{ WeakStates;}}\\{1}&{\mathrm{ if }x\in\mathrm{ IntermediateStates. }}
```

weight (x)={}{\begin{array}{ll}{|x|}\&{\mathrm{ if }x\in\mathrm{ StrongStates or }x\in\mathrm{ WeakStates;}}
{1}\&{\mathrm{ if }x\in\mathrm{ IntermediateStates. }}
2 }\operatorname{sgn}(x)={\begin{array}{ll}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m};}
{-1}\&{\mathrm{ otherwise. }}
2 }\operatorname{sgn}(x)={\begin{array}{ll}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m};}
{-1}\&{\mathrm{ otherwise. }}
value (x)=\operatorname{sgn}(x)\cdotweight(x)
value (x)=\operatorname{sgn}(x)\cdotweight(x)
/* Functions for rounding state interactions */
/* Functions for rounding state interactions */
\phi(x)=-1
\phi(x)=-1
F}\mp@subsup{R}{\downarrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
F}\mp@subsup{R}{\downarrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
6 }\mp@subsup{R}{\uparrow}{*}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)

```
6 }\mp@subsup{R}{\uparrow}{*}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)
```



```
Sign-to-Zero(x)={}+{\begin{array}{ll}{+0}&{\mathrm{ if }\operatorname{sgn}(x)>0}\\{-0}&{\mathrm{ oherwise. }}
```

Sign-to-Zero(x)={}+{\begin{array}{ll}{+0}\&{\mathrm{ if }\operatorname{sgn}(x)>0}
{-0}\&{\mathrm{ oherwise. }}
procedure update }\langlex,y
procedure update }\langlex,y
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
x}\leftarrow\leftarrow\mp@subsup{R}{\downarrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2})\mathrm{ and }\mp@subsup{y}{}{\prime}\leftarrow\mp@subsup{R}{\uparrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2}
x}\leftarrow\leftarrow\mp@subsup{R}{\downarrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2})\mathrm{ and }\mp@subsup{y}{}{\prime}\leftarrow\mp@subsup{R}{\uparrow}{}(\frac{\mathrm{ value }(x)+\mathrm{ value (y)}}{2}
else if weight (x)\cdotweight (y)=0 and value (x) + value (y)>0 then
else if weight (x)\cdotweight (y)=0 and value (x) + value (y)>0 then
if weight (x)\not=0 then }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(x) and }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(x)
if weight (x)\not=0 then }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(x) and }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(x)
else }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(y)}\mathrm{ and }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(y)
else }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(y)}\mathrm{ and }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(y)
else if (x\in{-1, d,+1d}}\mathrm{ and weight (y)=1 and sgn(x)}\not=\operatorname{sgn}(y))\mathrm{ or
else if (x\in{-1, d,+1d}}\mathrm{ and weight (y)=1 and sgn(x)}\not=\operatorname{sgn}(y))\mathrm{ or
(y\in{-1d,+1d} and weight }(x)=1\mathrm{ and }\operatorname{sgn}(y)\not=\operatorname{sgn}(x))\mathrm{ then
(y\in{-1d,+1d} and weight }(x)=1\mathrm{ and }\operatorname{sgn}(y)\not=\operatorname{sgn}(x))\mathrm{ then
\mp@subsup{x}{}{\prime}\leftarrow-0 and \mp@subsup{y}{}{\prime}\leftarrow+0
\mp@subsup{x}{}{\prime}\leftarrow-0 and \mp@subsup{y}{}{\prime}\leftarrow+0
else
else
x}\leftarrow\leftarrow\mathrm{ Shift-to-Zero(x) and }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero(}y\mathrm{)
x}\leftarrow\leftarrow\mathrm{ Shift-to-Zero(x) and }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero(}y\mathrm{)

Verifying correctness

Easy fix, but protocols can become complex even for $B \geq R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh Microsoft Research

Rati Gelashvili ${ }^{*}$
MIT

Milan Vojnović
Microsoft Research

```
1 weight \((x)= \begin{cases}|x| & \text { if } x \in \text { StrongStates or } x \in \text { WeakStates } ; \\ 1 & \text { if } x \in \text { IntermediateStates }\end{cases}\)
\(2 \operatorname{sgn}(x)= \begin{cases}1 & \text { if } x \in\left\{+0,1_{d}, \ldots, 1_{1}, 3,5, \ldots, m\right\} \text {; } \\ -1 & \text { otherwise. }\end{cases}\)
3 value \((x)=\operatorname{sgn}(x) \cdot \operatorname{weight}(x)\)
/* Functions for rounding state interactions */
\(\phi(x)=-1_{1}\) if \(x=-1 ; 1_{1}\) if \(x=1 ; x\), otherwise
\(5 R_{\downarrow}(k)=\phi(k\) if \(k\) odd integer, \(k-1\) if \(k\) even \()\)
\(6 R_{\uparrow}(k)=\phi(k\) if \(k\) odd integer, \(k+1\) if \(k\) even \()\)
```



```
7 Shift-to-Zero \((x)= \begin{cases}1_{j+1} & \text { otherwise. }\end{cases}\)
\(\operatorname{Sign-to-Zero}(x)= \begin{cases}+0 & \text { if } \operatorname{sgn}(x)>0 \\ -0 & \text { oherwise. }\end{cases}\)
procedure update \(\langle x, y\rangle\)
10
11
12
13
        if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
        x
    else if weight (x)\cdotweight (y)=0 and value (x) + value (y)>0 then
        if weight (x)\not=0 then }\mp@subsup{x}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero (x) and }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(x)
        else }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(y) and }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(}(y
    else if (x\in{-1, , +1 d } and weight (y)=1 and sgn(x)\not=\operatorname{sgn}(y))\mathrm{ or}
            (y\in{-1, d,+1d} and weight }(x)=1\mathrm{ and }\operatorname{sgn}(y)\not=\operatorname{sgn}(x))\mathrm{ then
        x}\leftarrow\leftarrow-0\mathrm{ and }\mp@subsup{y}{}{\prime}\leftarrow+
    else
            x}\leftarrow\mathrm{ Shift-to-Zero(x) and }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero(y)

\section*{Verifying correctness}

\section*{Testing whether a protocol computes \(\varphi\) amounts to testing:}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } \operatorname{BSCC} \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

\section*{Verifying correctness}

\section*{Testing whether a protocol computes \(\varphi\) amounts to testing:}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } \operatorname{BSCC} \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Theorem
Verification is decidable

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

As difficult as verification Ackermannan-complete (Leroux; Czerwinski \& Orlikowski FOCS'21, Esparza et al. CONCUR'15)

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
\neg \exists C, D: & C \stackrel{*}{\rightarrow} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } \operatorname{BSCC} \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Relaxed with Presburger-definable overapproximation!

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow[*]{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

Difficult to express

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

BSCCs are of size 1
for many protocols!

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
& \neg \exists C, D: C-\stackrel{*}{\rightarrow} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C) \\
& \text { Testable with an } S M T \text { solver }
\end{aligned}
\]

\section*{Verification: \(1^{\text {st }}\) approach}
\[
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
\]

But how to know whether all BSCCs are of size 1?

\section*{Silent protocols}

A protocol is silent if fair executions reach terminal configurations


\section*{Silent protocols}

A protocol is silent if fair executions reach terminal configurations
- Testing silentness is as hard as verification of correctness
- But many protocols satisfy a common design


BSCCs of size 1

\section*{Silent protocols: layered termination}

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Silent protocols: layered termination}

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Silent protocols: layered termination}

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Silent protocols: layered termination}

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)


\section*{Silent protocols: layered termination}

\section*{Partition \(T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}\) s.t. for every \(i\)}
- all executions restricted to \(T_{i}\) terminate
- if \(T_{1} \cup \cdots \cup T_{i-1}\) disabled in \(C\) and \(C \xrightarrow{T_{i}^{*}} D\), then \(T_{1} \cup \cdots \cup T_{i-1}\) also disabled in \(D\)

\(T_{1}\)
\[
\begin{aligned}
& B R \rightarrow b b \\
& B r \rightarrow B b \\
& R b \rightarrow R r \\
& b r \rightarrow b b
\end{aligned}
\]

\section*{Silent protocols: layered termination}
\[
\begin{array}{rl}
T_{1} & B R b b \\
B r & \rightarrow B b \\
R b & \rightarrow R r \\
b r & \rightarrow b b
\end{array}
\]

Bad partition: not all executions over \(T_{1}\) terminate

\section*{Silent protocols: layered termination}
\[
\begin{array}{r}
T_{1} \quad B R \rightarrow b b \\
B r \rightarrow B b \\
R b \rightarrow R r \\
b r \rightarrow b b
\end{array}
\]

Bad partition: not all executions over \(T_{1}\) terminate
\[
\begin{aligned}
\{\boldsymbol{B}, \boldsymbol{B}, \boldsymbol{R}, \boldsymbol{R}\} \rightarrow & \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow \\
& \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow \cdots
\end{aligned}
\]

\section*{Silent protocols: layered termination}


\section*{Silent protocols: layered termination}

\# \(B \geq\) \#R:
\(\left\{B^{*}, R^{*}\right\}\)

\section*{Silent protocols: layered termination}

\section*{\(\begin{array}{l:l:l}T_{1} & T_{2} & T_{3}\end{array}\) \\  \\ \[
\text { Br } \rightarrow \text { B b }
\] \\ br r b b}
\#B \(\geq\) \# :
\[
\left\{B^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\}
\]

\section*{Silent protocols: layered termination}

\# \(B \geq\) \#R:
\[
\left\{B^{*}, R^{*}\right\} \xrightarrow{*}\left\{B^{*}, b^{*}, r^{*}\right\}
\]

\section*{Silent protocols: layered termination}

\# \(B \geq\) \#R:
\[
\left\{B^{*}, R^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}\right\}
\]

\section*{Silent protocols: layered termination}

\# \(B \geq\) \# R:
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \# B:
\[
\left\{R^{+}, B^{*}\right\}
\]

\section*{Silent protocols: layered termination}
\[
\begin{array}{c:c:c}
T_{1} \quad \mathbf{X} & T_{2} & T_{3} \boldsymbol{B r} \rightarrow \boldsymbol{b} b \\
\boldsymbol{B} \boldsymbol{R} \rightarrow \boldsymbol{b} \boldsymbol{b} & \boldsymbol{R} \boldsymbol{b} \rightarrow \boldsymbol{R} \boldsymbol{r} & \boldsymbol{b r} \rightarrow \boldsymbol{b} \boldsymbol{b}
\end{array}
\]
\# B \(\geq\) \# :
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \#B:
\[
\left\{\mathbf{R}^{+}, B^{*}\right\} \xrightarrow{*}\left\{\mathbf{R}^{+}, b^{*}, r^{*}\right\}
\]

\section*{Silent protocols: layered termination}

\# \(B \geq\) \# :
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \#B:
\[
\left\{R^{+}, B^{*}\right\} \xrightarrow{*}\left\{R^{+}, b^{*}, r^{*}\right\} \xrightarrow{*}\left\{R^{+}, r^{*}\right\}
\]

\section*{Silent protocols: layered termination}

\# \(B \geq\) \# :
\[
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}, \boldsymbol{r}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
\]
\#R > \#B:
\[
\left\{R^{+}, B^{*}\right\} \xrightarrow{*}\left\{R^{+}, b^{*}, r^{*}\right\} \xrightarrow{*}\left\{R^{+}, r^{*}\right\}
\]

\section*{Silent protocols: layered termination}


\section*{Theorem}

Deciding whether a protocol is strongly silent \(\in N P\)

\section*{Recent efficient protocols are not silent!}

\title{
Recent efficient protocols are not silent!
}

\author{
More powerful approach: using "correctness certificates"
}

\section*{Correctness certificates}

\section*{Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)}

\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

Correctness certificates

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)


Correctness certificates

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)


\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(x_{1} \subseteq\{C\) : opinion \((C)=b\}\)
\(x\), only contains configs with b-consensus
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)
- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
ro is nondecreasing

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
ro is weakly decreasing

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(x_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Correctness certificates}

Approach: certify that \(\varphi\) is computed correctly for \(b \in\{0,1\}\)

- \(C \in X_{i} \wedge C \xrightarrow{*} C^{\prime} \Longrightarrow C^{\prime} \in X_{i}\)
- \(X_{0} \supseteq\{C: C\) is initial and \(\varphi(C)=b\}\)
- \(X_{1} \subseteq\{C: \operatorname{opinion}(C)=b\}\)
- \(C \xrightarrow{*} C^{\prime} \Longrightarrow r_{0}(C) \geq r_{0}\left(C^{\prime}\right)\)
- \(\forall C \in X_{0} \backslash X_{1} \exists C^{\prime} \in X_{0}: C \xrightarrow{*} C^{\prime} \wedge r_{0}(C)>r_{0}\left(C^{\prime}\right)\)
\(r_{0}:\) Configs \(\rightarrow \mathbb{N}\)

\section*{Stage graphs}

Stage graph: same idea with \(X_{0}, X_{1}, \ldots, X_{k}\) organized in a DAG
\(B R \rightarrow b b\)
\(B r \rightarrow B b\)
\(R b \rightarrow R r\)
\(b r \rightarrow b b\)

\section*{Stage graphs}

Stage graph: same idea with \(X_{0}, X_{1}, \ldots, X_{k}\) organized in a DAG


\section*{Stage graphs}

Stage graph: same idea with \(X_{0}, X_{1}, \ldots, X_{k}\) organized in a DAG


\section*{Stage graphs}

Stage graph: same idea with \(X_{0}, X_{1}, \ldots, X_{k}\) organized in a DAG


\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Theorem}

Every correct protocol has Presburger stage graphs

\section*{Stage graphs}

A stage graph is Presburger if
- Each set \(X_{i}\) is Presburger-definable
- Each ranking function \(r_{i}\) is Presburger-definable
- Each \(r_{i}\) can be decreased in at most \(B_{i}\) steps

\section*{Theorem}

Every correct protocol has Presburger stage graphs
Computable and checkable in practice with SMT solving!

\section*{Demonstration}

Expected termination time
\[
\left.\begin{array}{rl}
\mathrm{B}, \mathrm{R} & \mapsto \mathrm{~b}, \mathrm{~b} \\
\mathrm{~B}, \mathrm{r} & \mapsto \mathrm{~B}, \mathrm{~b} \\
\mathrm{R}, \mathrm{~b} & \mapsto
\end{array}\right) \mathrm{R}, \mathrm{r},
\]

Correctly computes predicate \#B \(\geq\) \# ...but how fast?

\section*{Expected termination time}
\[
\begin{array}{rll}
\mathrm{B}, \mathbf{R} & \mapsto \mathrm{~b}, \mathrm{~b} \\
\mathrm{~B}, \mathrm{r} & \mapsto & \mathrm{~B}, \mathrm{~b} \\
\mathrm{R}, \mathrm{~b} & \mapsto & \mathrm{R}, \mathrm{r} \\
\mathrm{~b}, \mathrm{r} & \mapsto \mathrm{~b}, \mathrm{~b}
\end{array}
\]

Correctly computes predicate \#B \(\geq\) \# ...but how fast?
- Natural to look for fast protocols
- Bounds on expected termination time useful since generally not possible to know whether a protocol has stabilized

\section*{Expected termination time}
\(B, R \mapsto b, b\)
\(B, r \mapsto B, b\)
\(\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}\)
\(b, r \mapsto b, b\)
Correctly computes predicate \#B?\#R
...but how fast?

\section*{Theorem}

Angluin et al. PODC'04
Every Presburger-definable predicate is computable by a protocol with expected termination time \(\in \mathcal{O}\left(n^{2} \log n\right)\)

\section*{Expected termination time}
\(B, R \mapsto b, b\)
\(B, r \mapsto B, b\)
\(\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}\)
\(\mathbf{b}, \mathbf{r} \mapsto \mathrm{b}, \mathrm{b}\)
Simulations show that it is slow when R has slight majority:
\begin{tabular}{rl} 
Steps & \begin{tabular}{l} 
Initial \\
configuration
\end{tabular} \\
100000 & \(\{B: 7, \mathrm{R}: 8\}\) \\
7 & \(\{\mathrm{~B}: 3, \mathrm{R}: 12\}\) \\
27 & \(\{\mathrm{~B}: 4, \mathrm{R}: 11\}\) \\
100000 & \(\{\mathrm{~B}: 7, \mathrm{R}: 8\}\) \\
-3 & \(\{\mathrm{~B}: 13, \mathrm{R}: 2\}\)
\end{tabular}

\section*{Expected termination time}
\[
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& B, \mathbf{T} \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0
\end{aligned}
\]

Alternative protocol
with explicit ties

\section*{Expected termination time}
\[
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& B, \mathbf{T} \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0 \\
& \text { Alternative protocol } \\
& \text { with explicit ties }
\end{aligned}
\]

\section*{Expected termination time}
\(\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x\) for \(x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\}\)
\(B, \mathbf{T} \mapsto B, b\)
\(\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}\)
\(\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}\)
Is it faster?
\[
\text { Yes, for size } 15 \ldots
\]


\section*{Expected termination time}
\[
\begin{array}{llrl}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
\mathbf{B}, \mathbf{T} & \mapsto \mathbf{B}, \mathbf{b} & \\
\mathbf{R}, \mathbf{T} & \mapsto \mathbf{R}, \mathbf{r} & \text { Obtained using PRISM } \\
\mathbf{T}, \mathbf{T} & \mapsto \mathbf{T}, \mathbf{t} & \text { Clément et al. ICDCS'11, Offtermatt' } 17
\end{array}
\]


\section*{Expected termination time}
\[
\begin{array}{ll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto \mathbf{R}, \mathbf{r}
\end{array} \quad \text { Goal: analyze time }
\]


\section*{Expected termination time: formal definition}

Random variable Steps \({ }_{x}\) :
assigns to each run \(\sigma\) the smallest \(k\) s.t. \(\sigma_{k} \in X\), otherwise \(\infty\)

\section*{Expected termination time: formal definition}

Random variable Steps \({ }_{\chi}\) :
assigns to each run \(\sigma\) the smallest \(k\) s.t. \(\sigma_{k} \in X\), otherwise \(\infty\)

\section*{Maximal expected termination time}

We are interested in time: \(\mathbb{N} \rightarrow \mathbb{N}\) where
\[
\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps } s_{\text {stable }}\right]: C \text { is initial and }|C|=n\right\}
\]

\section*{Expected termination time: formal definition}

Random variable Steps \({ }_{x}\) :
assigns to each run \(\sigma\) the smallest \(k\) s.t. \(\sigma_{k} \in X\), otherwise \(\infty\)

\section*{Maximal expected termination time}

We are interested in time: \(\mathbb{N} \rightarrow \mathbb{N}\) where
\[
\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps } s_{\text {stable }}\right]: C \text { is initial and }|C|=n\right\}
\]

\section*{Expected termination time: formal definition}

Random variable Steps \({ }_{\chi}\) :
assigns to each run \(\sigma\) the smallest \(k\) s.t. \(\sigma_{k} \in X\), otherwise \(\infty\)

\section*{Maximal expected termination time}

We are interested in time: \(\mathbb{N} \rightarrow \mathbb{N}\) where
\[
\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps } s_{\text {stable }}\right]: C \text { is initial and }|C|=n\right\}
\]

\section*{Expected termination time: formal definition}

Random variable Steps \({ }_{\chi}\) :
assigns to each run \(\sigma\) the smallest \(k\) s.t. \(\sigma_{k} \in X\), otherwise \(\infty\)

\section*{Maximal expected termination time}

We are interested in time: \(\mathbb{N} \rightarrow \mathbb{N}\) where
\[
\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps } s_{\text {stable }}\right]: C \text { is initial and }|C|=n\right\}
\]

\section*{Expected termination time: stage graphs}
\[
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
x, y & \mapsto & x, x
\end{array}
\]

\section*{Expected termination time: stage graphs}
\[
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
x, y & \mapsto & x, x
\end{array}
\]

\(12 / 13\)

\section*{Expected termination time: stage graphs}
\[
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
x, y & \mapsto & x, x
\end{array}
\]


12/13

\section*{Expected termination time: stage graphs}
\[
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
x, y & \mapsto & x, x
\end{array}
\]


\section*{Expected termination time: stage graphs}
\[
\begin{array}{rll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
x, y & \mapsto & x, x
\end{array}
\]
\[
\begin{aligned}
\mathbb{E}_{C}\left[\text { Steps }_{C(\mathbf{b})+C(\mathbf{r})=0}\right] & \leq \sum_{i=1}^{c(\mathbf{b})+C(\mathrm{r})} \frac{n^{2}}{2 \cdot C(\mathbf{T}) \cdot i} \\
& \leq \sum_{i=1}^{n} \frac{n^{2}}{i} \\
& \leq \alpha \cdot n^{2} \cdot \log n
\end{aligned}
\]


\section*{Expected termination time: stage graphs}

\section*{In practice, able to report:}
\[
\mathcal{O}\left(n^{2}\right), \mathcal{O}\left(n^{2} \log n\right), \mathcal{O}\left(n^{3}\right), \mathcal{O}\left(n^{c}\right), \mathcal{O}\left(2^{n}\right)
\]

\section*{Demonstration}

\section*{Conclusion: summary}

\section*{Population protocols analyzable automatically:}
- Verification + explanation of correctness
- Bounds on expected termination time
- Tool support

\section*{Conclusion: future work}
- Asymptotic lower bounds on expected termination time?
- Verification of extensions of the model?
- Quantitative model checking?

\section*{Thank you!}```

