Formal analysis of crowd systems

Michael Blondin

Formal analysis of crowd systems

Michael Blondin

Joint work with J. Esparza, M. Helfrich, S. Jaax, A. Kučera, P. J. Meyer

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Model *e.g.* networks of passively mobile sensors and chemical reaction networks

Overview

Model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0, 1\}$ e.g. $\varphi(m, n)$ is computed by m + n agents

Overview



This talk: automatic verification and expected termination time analysis

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

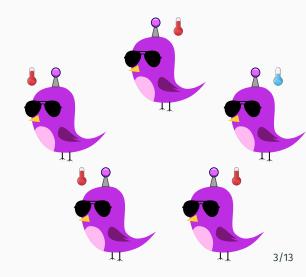
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

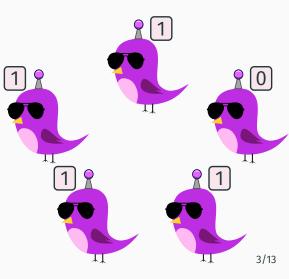
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Are there at least 4 sick birds?



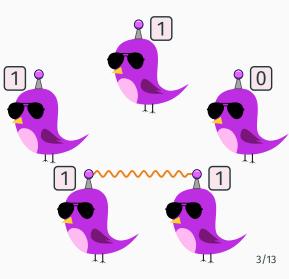
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



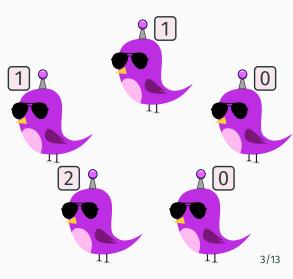
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



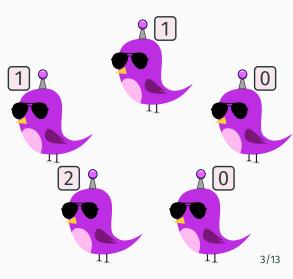
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



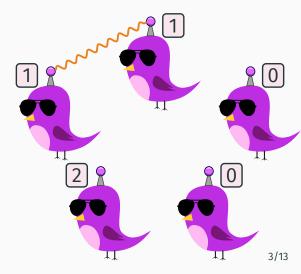
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



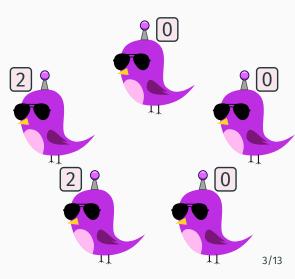
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



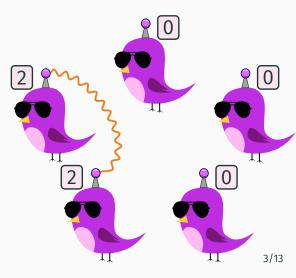
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



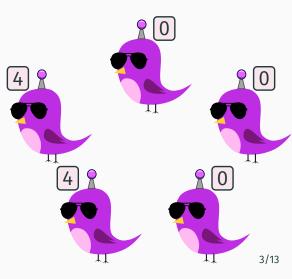
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



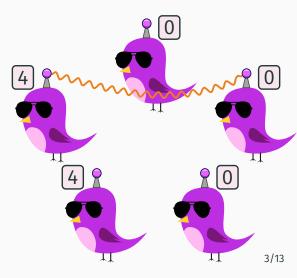
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



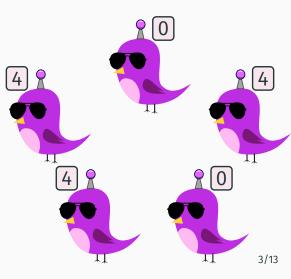
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



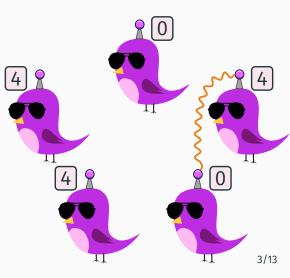
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



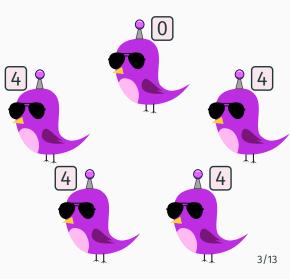
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



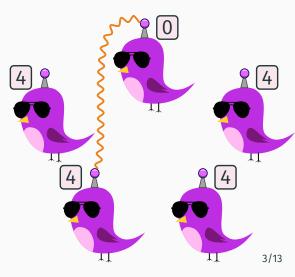
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



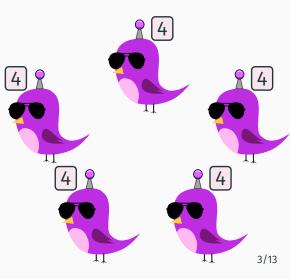
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



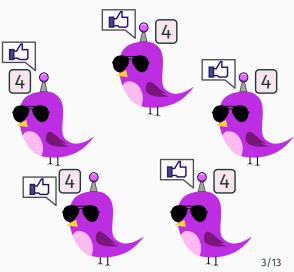
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



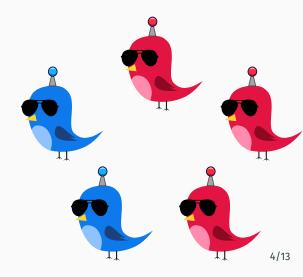
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



Example: majority protocol

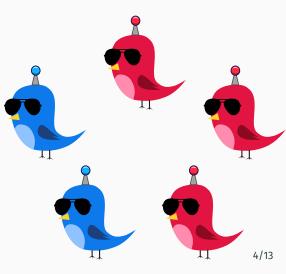
blue agents ≥ # red agents?



Example: majority protocol

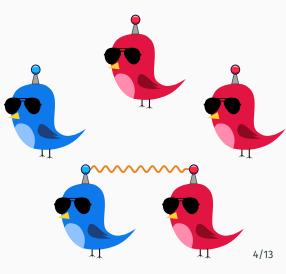
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



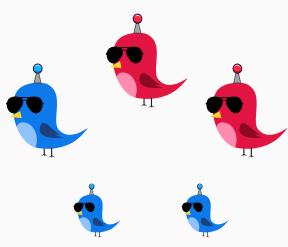
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



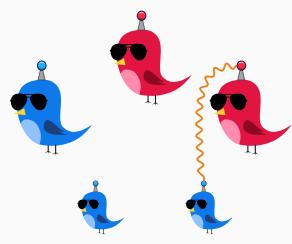
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



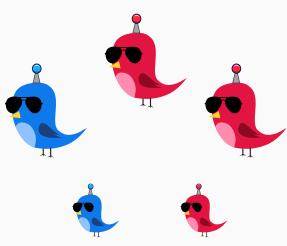
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



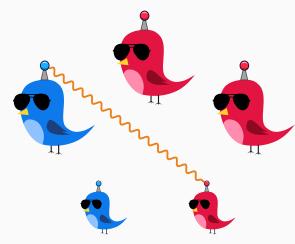
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



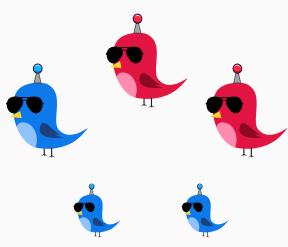
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



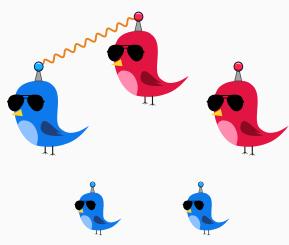
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



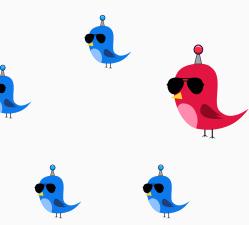
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



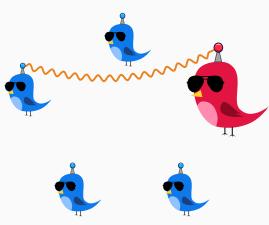
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



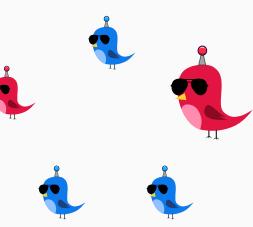
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



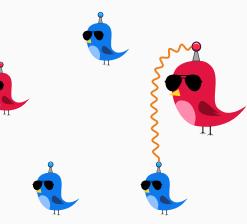
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



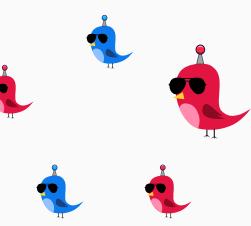
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



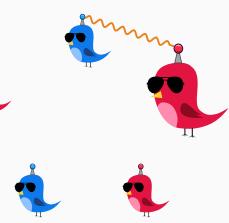
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



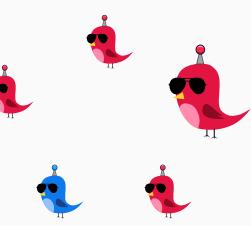
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



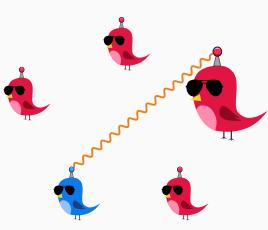
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



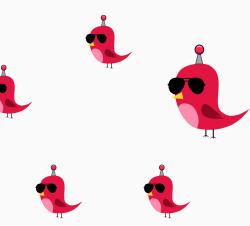
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

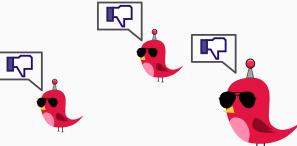
- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

Protocol:

 Two large agents become small blue agents



• Large agents convert small agents to their colour

Demonstration

- States: finite set Q
- Opinions:
- Initial states:
- Transitions: $T \subseteq Q^2 \times Q^2$

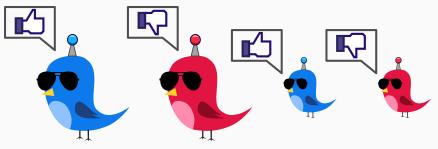
 $I \subset Q$

 $0: Q \rightarrow \{\texttt{false}, \texttt{true}\}$

- finite set Q States:
- Opinions:
- Initial states:

 $0: Q \rightarrow \{ false, true \}$

- $I \subset Q$
- Transitions: $T \subset Q^2 \times Q^2$

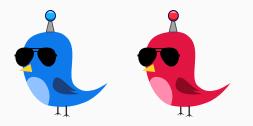


• States: finite set Q

 $0: Q \rightarrow \{\texttt{false}, \texttt{true}\}$

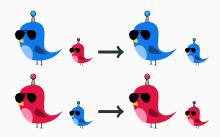
- Opinions:
- Initial states:
- Transitions: $T \subseteq Q^2 \times Q^2$

 $I \subset Q$

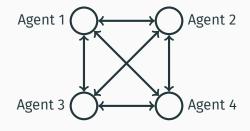


- States: finite set Q
- Opinions:
- Initial states:
- Transitions:

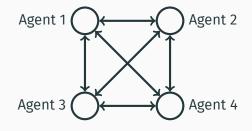
- - $0: Q \rightarrow \{ false, true \}$
- $I \subset Q$
 - $T \subset Q^2 \times Q^2$



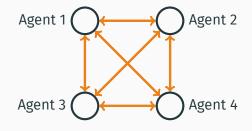
All agents can interact pairwise (complete topology)



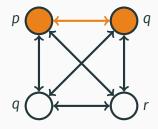
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



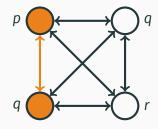
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



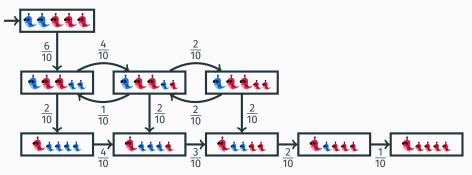
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



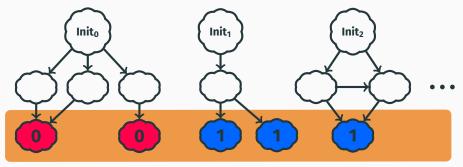
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

$$\mathbb{P}[C \to C'] = \sum_{t \text{ s.t. } C^{\frac{t}{T}} \subset C'} \mathbb{P}[\text{fire } t \text{ in } C]$$

Underlying Markov chain:



A protocol computes a predicate $f: \mathbb{N}' \to \{0, 1\}$ if runs reach common stable consensus with probability 1



A protocol computes a predicate $f: \mathbb{N}' \to \{0, 1\}$ if runs reach common stable consensus with probability 1

Expressive power

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$

 $\textbf{B}~\textbf{R}~\textbf{B}~\textbf{R}~\rightarrow\textbf{B}~\textbf{R}~\textbf{b}~\textbf{b}$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$

$\textbf{B}~\textbf{R}~\textbf{B}~\textbf{R}~\rightarrow \textbf{B}~\textbf{R}~\textbf{b}~\textbf{b} \rightarrow \textbf{B}~\textbf{R}~\textbf{r}~\textbf{b}$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$

$\textbf{B}~\textbf{R}~\textbf{B}~\textbf{R}~\rightarrow \textbf{B}~\textbf{R}~\textbf{b}~\textbf{b}~\rightarrow \textbf{B}~\textbf{R}~\textbf{r}~\textbf{b}~\rightarrow \textbf{b}~\textbf{b}~\textbf{r}~\textbf{b}$

Protocol correct with tie-breaker:

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$ $b r \rightarrow b b$

$\textbf{B}~\textbf{R}~\textbf{B}~\textbf{R}~\rightarrow \textbf{B}~\textbf{R}~\textbf{b}~\textbf{b}~\rightarrow \textbf{B}~\textbf{R}~\textbf{r}~\textbf{b}~\rightarrow \textbf{b}~\textbf{b}~\textbf{r}~\textbf{b}$

Protocol correct with tie-breaker:

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$ $b r \rightarrow b b$

$\textbf{B}~\textbf{R}~\textbf{B}~\textbf{R}~\rightarrow \textbf{B}~\textbf{R}~\textbf{b}~\textbf{b}~\rightarrow \textbf{B}~\textbf{R}~\textbf{r}~\textbf{b}~\rightarrow \textbf{b}~\textbf{b}~\textbf{r}~\textbf{b}~\rightarrow \textbf{b}~\textbf{b}~\textbf{b}~\textbf{b}$

Dan Alistarh

Easy fix, but protocols can become complex even for $B \ge R$:

Fast and Exact Majority in Population Protocols

Milan Voinović

Rati Gelashvili* Microsoft Research Microsoft Research 1 weight(x) = $\begin{cases}
|x| & \text{if } x \in StrongStates \text{ or } x \in WeakStates; \\
1 & \text{if } x \in IntermediateStates.}
\end{cases}$ $\mathbf{2} \ sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{cases}$ 3 $value(x) = son(x) \cdot weight(x)$ /* Functions for rounding state interactions */ 4 $\phi(x) = -1_1$ if $x = -1; 1_1$ if x = 1; x, otherwise 5 $R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$ 6 R^{*}_↑(k) = φ(k if k odd integer, k + 1 if k even) 7 Shift-to-Zero(x) = $\begin{cases} -1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = 1_j \text{ for some index } j < d \\ x & \text{otherwise.} \end{cases}$ 8 Sign-to-Zero(x) = $\begin{cases} +0 & \text{if } sgn(x) > 0 \\ -0 & \text{oherwise.} \end{cases}$ 9 procedure update $\langle x, y \rangle$ $\begin{array}{l} \text{if } (weight(x) > 0 \text{ and } weight(y) > 1) \text{ or } (weight(y) > 0 \text{ and } weight(x) > 1) \text{ then } \\ x' \leftarrow R_{\downarrow} \left(\frac{value(x) + value(y)}{2} \right) \text{ and } y' \leftarrow R_{\uparrow} \left(\frac{value(x) + value(y)}{2} \right) \end{array}$ 10 11 12 else if $weight(x) \cdot weight(y) = 0$ and value(x) + value(y) > 0 then 13 if $weight(x) \neq 0$ then $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Sign-to-Zero(x)$ 14 else $y' \leftarrow Shift-to-Zero(y)$ and $x' \leftarrow Sign-to-Zero(y)$ else if $(x \in \{-1_d, +1_d\}$ and weight(y) = 1 and $sqn(x) \neq sqn(y)$) or $(y \in \{-1_d, +1_d\}$ and weight(x) = 1 and $sgn(y) \neq sgn(x)$) then 16 17 $x' \leftarrow -0$ and $y' \leftarrow +0$ 18 else $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Shift-to-Zero(y)$ 19

Easy fix, but protocols can become complex even for $B \ge R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh Microsoft Research Rati Gelashvili

Milan Vojnović Microsoft Research

	$weight(x) = \begin{cases} x & \text{if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{if } x \in IntermediateStates. \end{cases}$
2	$sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\};\\ -1 & \text{otherwise.} \end{cases}$
3	$value(x) = sgn(x) \cdot weight(x)$
	/* Functions for rounding state interactions */
4	$\phi(x) = -1_1$ if $x = -1; 1_1$ if $x = 1; x$, otherwise
	$R_{\perp}(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$
	$R^{*}_{\uparrow}(k) = \phi(k \text{ if } k \text{ odd integer}, k + 1 \text{ if } k \text{ even})$
7	$Shift-to-Zero(x) = \begin{cases} -1_{j+1} & \text{if } x = -1_j \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = 1_j \text{ for some index } j < d \\ & \text{otherwise.} \end{cases}$
8	$Sign-to-Zero(x) = \begin{cases} +0 & \text{if } sgn(x) > 0\\ -0 & \text{oherwise.} \end{cases}$
9	procedure update (x, y)
10	if $(weight(x) > 0 and weight(y) > 1)$ or $(weight(y) > 0 and weight(x) > 1)$ then
11	$x' \leftarrow R_{\downarrow}\left(\frac{value(x)+value(y)}{2}\right)$ and $y' \leftarrow R_{\uparrow}\left(\frac{value(x)+value(y)}{2}\right)$
12	else if $weight(x) \cdot weight(y) = 0$ and $value(x) + value(y) > 0$ then
13	if $weight(x) \neq 0$ then $x' \leftarrow Shift-to-Zero(x)$ and $y' \leftarrow Sign-to-Zero(x)$
14	else $y' \leftarrow Shift-to-Zero(y)$ and $x' \leftarrow Sign-to-Zero(y)$
15	else if $(x \in \{-1_d, +1_d\}$ and $weight(y) = 1$ and $sqn(x) \neq sqn(y)$) or
16	$(y \in \{-1_d, +1_d\}$ and $weight(x) = 1$ and $sgn(y) \neq sgn(x)$ then
17	$x' \leftarrow -0$ and $y' \leftarrow +0$
18	else
19	$x' \leftarrow Shift-to-Zero(x) \text{ and } y' \leftarrow Shift-to-Zero(y)$
10	x, only to $E(r)(x)$ and y , only $E(r)(y)$

low to verify correctness

Testing whether a protocol computes φ amounts to testing: $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion $(D) \neq \varphi(C)$

Testing whether a protocol computes φ amounts to testing: $\neg \exists C, D: C \xrightarrow{*} D \land$ *C* is initial \land

D is in a BSCC \wedge

opinion(D) $\neq \varphi(C)$

Theorem

Esparza et al. CONCUR'15

Verification is decidable

$\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \wedge D is in a BSCC \wedge opinion(D) $\neq \varphi(C)$ As difficult as verification Ackermannan-complete (Leroux; Czerwinski & Orlikowski FOCS'21, Esparza et al. CONCUR'15)

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion(D) $\neq \varphi(C)$

Relaxed with Presburger-definable overapproximation! $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is in a BSCC \land opinion(D) $\neq \varphi(C)$

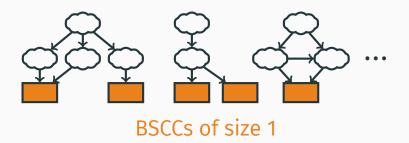
Difficult to express

 $\neg \exists C, D \colon C \xrightarrow{*} D \land$ C is initial \wedge D is terminal \wedge opinion(D) $\neq \varphi(C)$ BSCCs are of size 1 for many protocols! $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial \land D is terminal \land opinion(D) $\neq \varphi(C)$

Testable with an SMT solver

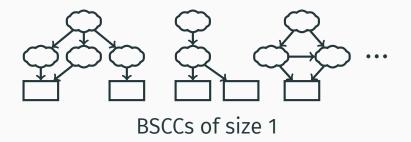
 $\neg \exists C, D: C \xrightarrow{*} D \land$ $C \text{ is initial } \land$ $D \text{ is terminal } \land$ $opinion(D) \neq \varphi(C)$ But how to know whether
all BSCCs are of size 1?

A protocol is silent if fair executions reach terminal configurations



A protocol is silent if fair executions reach terminal configurations

- Testing silentness is as hard as verification of correctness
- But many protocols satisfy a common design

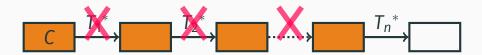


- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

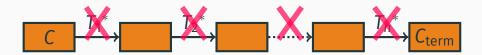
- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and C $\xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



```
T_{1}
B R \rightarrow b b
B r \rightarrow B b
R b \rightarrow R r
b r \rightarrow b b
```

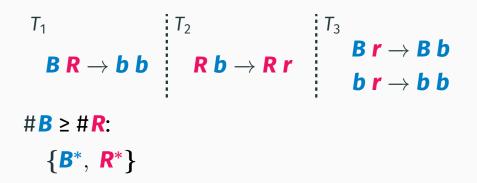
```
T_{1} \qquad \qquad B \ R \rightarrow b \ b \\ B \ r \rightarrow B \ b \\ R \ b \rightarrow R \ r \\ b \ r \rightarrow b \ b \\ \end{cases}
```

Bad partition: not all executions over T_1 terminate

$$\begin{array}{c}
 T_1 \\
 B R \rightarrow b b \\
 B r \rightarrow B b \\
 R b \rightarrow R r \\
 b r \rightarrow b b
\end{array}$$

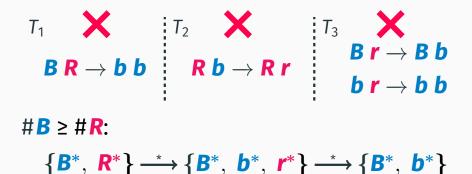
Bad partition: not all executions over T_1 terminate

$$\{\mathbf{B}, \mathbf{B}, \mathbf{R}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{b}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{r}, \mathbf{R}\} \rightarrow$$
$$\{\mathbf{B}, \mathbf{b}, \mathbf{b}, \mathbf{R}\} \rightarrow \{\mathbf{B}, \mathbf{b}, \mathbf{r}, \mathbf{R}\} \rightarrow \cdots$$



 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\}$

#B ≥ **#R:** {**B**^{*}, **R**^{*}} $\xrightarrow{*}$ {**B**^{*}, **b**^{*}, **r**^{*}}



 $\begin{array}{ccc} T_1 & & T_2 & & T_3 \\ \textbf{B} \ \textbf{R} \rightarrow \textbf{b} \ \textbf{b} & \textbf{R} \ \textbf{r} & \textbf{R} \ \textbf{r} & \textbf{b} \ \textbf{b} \ \textbf{r} \rightarrow \textbf{b} \ \textbf{b} \\ \textbf{b} \ \textbf{r} \rightarrow \textbf{b} \ \textbf{b} \end{array}$

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

#**R** > #**B**: {**R**⁺, **B***}

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

\mathbf{R} > # \mathbf{B} : { \mathbf{R}^+ , \mathbf{B}^* } → { \mathbf{R}^+ , \mathbf{b}^* , \mathbf{r}^* }

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

 $#\mathbf{R} > #\mathbf{B}:$ $\{\mathbf{R}^+, \ \mathbf{B}^*\} \xrightarrow{*} \{\mathbf{R}^+, \ \mathbf{b}^*, \mathbf{r}^*\} \xrightarrow{*} \{\mathbf{R}^+, \ \mathbf{r}^*\}$

 $#B \ge #R:$ $\{B^*, R^*\} \xrightarrow{*} \{B^*, b^*, r^*\} \xrightarrow{*} \{B^*, b^*\}$

 $#\mathbf{R} > #\mathbf{B}:$ $\{\mathbf{R}^+, \ \mathbf{B}^*\} \xrightarrow{*} \{\mathbf{R}^+, \ \mathbf{b}^*, \mathbf{r}^*\} \xrightarrow{*} \{\mathbf{R}^+, \ \mathbf{r}^*\}$

Theorem

Deciding whether a protocol is strongly silent $\in \mathsf{NP}$

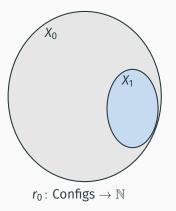
Recent efficient protocols are not silent!

Recent efficient protocols are not silent!

More powerful approach: using "correctness certificates"

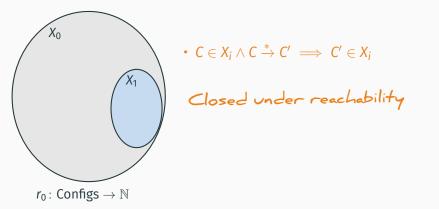
Correctness certificates

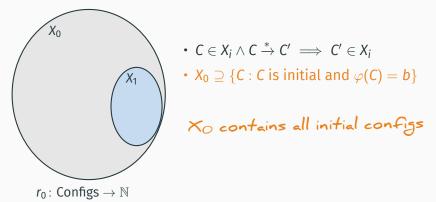
Approach: certify that φ is computed correctly for $b \in \{0, 1\}$

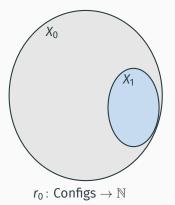


Correctness certificates

Approach: certify that φ is computed correctly for $b \in \{0, 1\}$



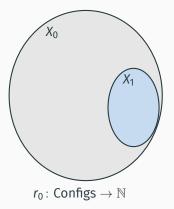




- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$

X1 only contains configs with b-consensus

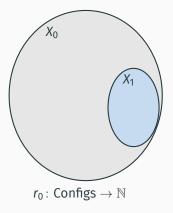
Approach: certify that φ is computed correctly for $b \in \{0, 1\}$



- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$

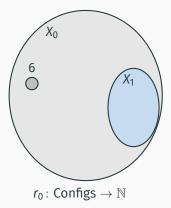
ro is nondecreasing

Approach: certify that φ is computed correctly for $b \in \{0, 1\}$

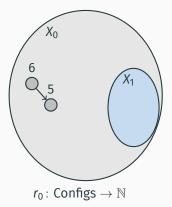


- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \wedge r_0(C) > r_0(C')$

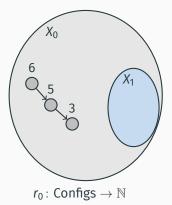
ro is weakly decreasing



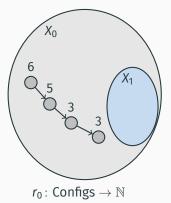
- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \wedge r_0(C) > r_0(C')$



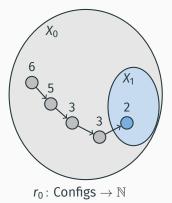
- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \wedge r_0(C) > r_0(C')$



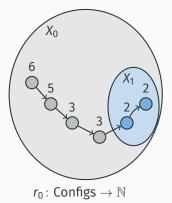
- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \wedge r_0(C) > r_0(C')$



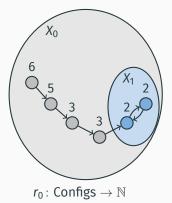
- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \wedge r_0(C) > r_0(C')$



- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \land r_0(C) > r_0(C')$

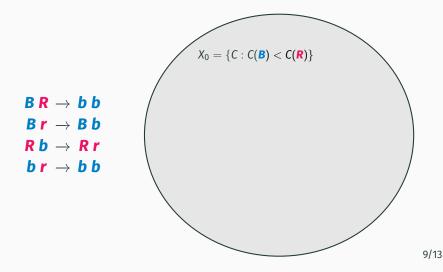


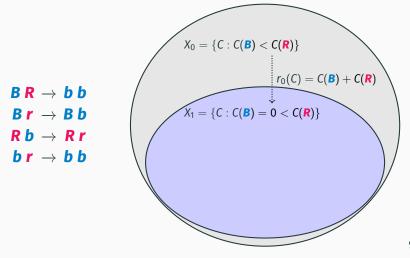
- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \land r_0(C) > r_0(C')$

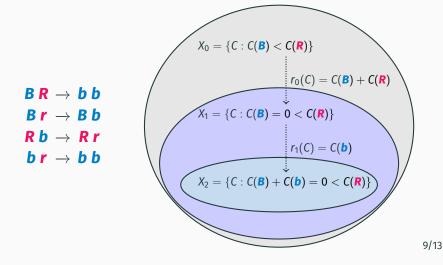


- $\bullet \ \mathsf{C} \in \mathsf{X}_i \land \mathsf{C} \xrightarrow{*} \mathsf{C}' \implies \mathsf{C}' \in \mathsf{X}_i$
- $X_0 \supseteq \{C : C \text{ is initial and } \varphi(C) = b\}$
- $X_1 \subseteq \{C : opinion(C) = b\}$
- $C \xrightarrow{*} C' \implies r_0(C) \ge r_0(C')$
- $\forall C \in X_0 \setminus X_1 \exists C' \in X_0 : C \xrightarrow{*} C' \land r_0(C) > r_0(C')$

 $B R \rightarrow b b$ $B r \rightarrow B b$ $R b \rightarrow R r$ $b r \rightarrow b b$







- Each set X_i is Presburger-definable
- Each ranking function *r_i* is Presburger-definable
- Each r_i can be decreased in at most B_i steps

- Each set X_i is Presburger-definable
- Each ranking function *r_i* is Presburger-definable
- Each r_i can be decreased in at most B_i steps

- Each set X_i is Presburger-definable
- Each ranking function r_i is Presburger-definable
- Each r_i can be decreased in at most B_i steps

- Each set X_i is Presburger-definable
- Each ranking function *r_i* is Presburger-definable
- Each r_i can be decreased in at most B_i steps

- Each set X_i is Presburger-definable
- Each ranking function *r_i* is Presburger-definable
- Each r_i can be decreased in at most B_i steps

Theorem

Every correct protocol has Presburger stage graphs

- Each set X_i is Presburger-definable
- Each ranking function *r_i* is Presburger-definable
- Each r_i can be decreased in at most B_i steps

Theorem

Every correct protocol has Presburger stage graphs

Demonstration

 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{b}$

- $\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$
- $\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$

 $\mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b}$

Correctly computes predicate #B ≥ #R ...but how fast?

 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{b}$

- $\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$
- $\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$

 $\mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b}$

Correctly computes predicate #B ≥ #R ...but how fast?

- Natural to look for fast protocols
- Bounds on expected termination time useful since generally not possible to know whether a protocol has stabilized

 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{b}$

- $\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$
- $\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$

 $\bm{b}, \bm{r} \ \mapsto \ \bm{b}, \bm{b}$

Correctly computes predicate #B 2 #R ...but how fast?

Theorem

Angluin et al. PODC'04

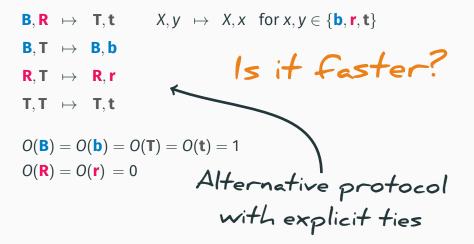
Every Presburger-definable predicate is computable by a protocol with expected termination time $\in O(n^2 \log n)$

 $\begin{array}{rrrr} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{b} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}$

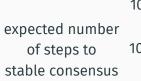
Simulations show that it is slow when R has slight majority:

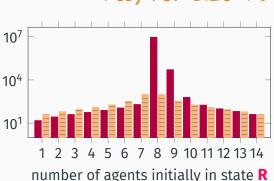
Steps	Initial configuration
100000	{B: 7, R: 8}
7	{B: 3, R: 12}
27	{B: 4, R: 11}
100000	{B: 7, R: 8}
3	{B: 13, R: 2}

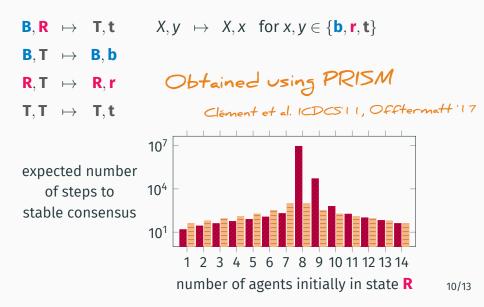
 $X, y \mapsto X, x \text{ for } x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$ **B**, **R** \mapsto **T**, **t** $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$ $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$ $T, T \mapsto T, t$ $O(\mathbf{B}) = O(\mathbf{b}) = O(\mathbf{T}) = O(\mathbf{t}) = 1$ $O(\mathbf{R}) = O(\mathbf{r}) = 0$ Alternative protocol with explicit ties

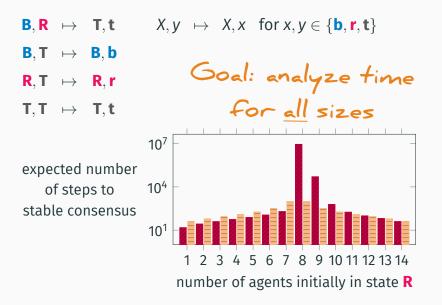


 $B, R \mapsto T, t$ $X, y \mapsto X, x$ for $x, y \in \{b, r, t\}$ $B, T \mapsto B, b$ Is if faster? $R, T \mapsto R, r$ Is if faster? $T, T \mapsto T, t$ Yes, for size 15...









assigns to each run σ the smallest k s.t. $\sigma_k \in X$, otherwise ∞

assigns to each run σ the smallest k s.t. $\sigma_k \in X$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

assigns to each run σ the smallest k s.t. $\sigma_k \in X$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

assigns to each run σ the smallest k s.t. $\sigma_k \in X$, otherwise ∞

Maximal expected termination time

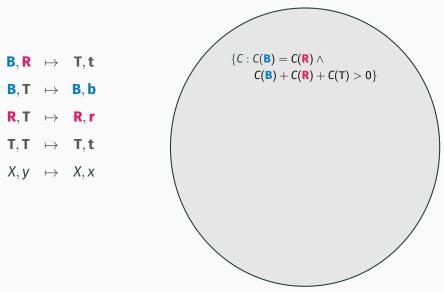
We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

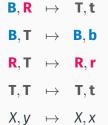
assigns to each run σ the smallest k s.t. $\sigma_k \in X$, otherwise ∞

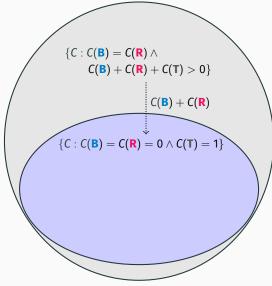
Maximal expected termination time

We are interested in $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$ where

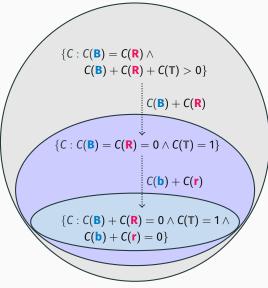
- ${\pmb B}, {\pmb R} \ \mapsto \ {\pmb T}, {\pmb t}$
- $\textbf{B},\textbf{T} \ \mapsto \ \textbf{B},\textbf{b}$
- $\textbf{R},\textbf{T} \ \mapsto \ \textbf{R},\textbf{r}$
- $\textbf{T},\textbf{T} \hspace{.1in} \mapsto \hspace{.1in} \textbf{T},\textbf{t}$
- $X, y \mapsto X, x$

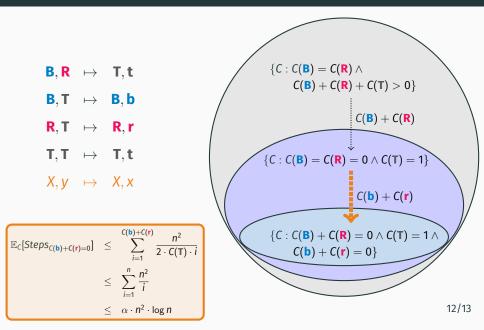






- _____
- $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
- $\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$
- $X, y \mapsto X, x$





In practice, able to report:

$\mathcal{O}(n^2), \ \mathcal{O}(n^2 \log n), \ \mathcal{O}(n^3), \ \mathcal{O}(n^c), \ \mathcal{O}(2^n)$

Demonstration

Population protocols analyzable automatically:

• Verification + explanation of correctness

• Bounds on expected termination time

Tool support

- Asymptotic *lower* bounds on expected termination time?
- Verification of extensions of the model?

• Quantitative model checking?

Thank you!