
Parameterized Verification of
Global Synchronization Protocols

Joint work with:

Swen Jacobs Nouraldin Jaber - Chris Wagner - Milind Kulkarni - Roopsha Samanta

Distributed Services based on Agreement Protocols

1

Agreement

Protocol

Data stores Caches

Locks Ledgers

2

Chubby RedisRaft

3

RedisRaft

PaxosZAB

Chubby

RaftPaxos

Provably Correct Applications with Verified Building Blocks for Agreement

4

Agreement

Protocol

Modular verification:

Assume important properties of
agreement primitive,

abstract from its implementation

Global Synchronization Protocols: our Contributions

5

Parameterized verification
A fragment with decidable parameterized

model checking problem (PMCP)

Cutoffs for the PMCP

Parameterized Synthesis

In many cases, efficient parameterized
reasoning is possible

Cutoffs enable automatic design of correct
systems, with additional benefits

Global Synchronization Protocols
a fragment with decidable PMCP

6

INIT SMOKE REPORT

NO
SMOKE

𝑮 = {SMOKE, NO SMOKE}

choose!! , 𝑮

BUSY

detect

IDLE
choose??

reset!!

reset??

Interleaving
semantics

Broadcasts,
Rendezvous

Identical FSMs

Guarded
commands

Global Synchronization Protocols

{1,2,4} 2 {1,2}cons(,)={ ,{1,4},{2,4}}

WinnersCardinality

Participants

Consensus
protocol

‣ Consistent Participants
‣ Consistent Winners

choose protocol

Counter abstraction,
Id-based

communication
abstraction

Global Synchronization
Protocol

Capturing the Essence of Consensus

The Parameterized Model Checking Problem (PMCP)

9

∀𝑛. 𝑀 𝑛 ⊨ 𝜙𝑀 𝑛∀𝑛. 𝑀 𝑛

System with n identical
processes

Undecidable

The PMCP for Broadcast Protocols and Guarded Protocols

10

Communication primitives

Network topology

Specification

Broadcasts

Clique

Safety

Global guards

Clique

Safety + Liveness

Decidable fragments
Broadcast
protocols

Guarded
protocols

[Esparza et al. 1999] [Emerson&Kahlon 2000]

Decidability of Parameterized Verification

11

PMCP is decidable for
well-behaved GSPs

w.r.t. safety properties.

Key result [CAV 2020]:

Well-structured Transition Systems

14

A well-quasi order (wqo)
on global states

𝑞 𝑝

𝑎
Compatibility: 𝒒 𝒒′

𝒑
𝑎

𝒑′

wqo

+ compatibility

+ computability of pred

= coverability decidable

A WQO for GSPs?

14

At least as many processes in each local state𝑞 𝑝

𝑞

2 0

𝑠0 𝑠1

𝑞′

1 1

𝑠0 𝑠1

𝑝

3 1

𝑠0 𝑠1

𝑎, {𝑠0}

, {𝑠0}𝑎
𝑞

2 0

𝑠0 𝑠1 compatibility does not
hold with respect to

?

A WQO for GSPs!

14

At least as many processes𝑞 𝑝

Satisfaction of guards is unchangedAt least as many processes𝑞 ≼ 𝑝

𝑝

2 0

𝑠0 𝑠1

𝑎, {𝑠0}

, {𝑠0}𝑎

≼

𝑝′

1 1

𝑠0 𝑠1

compatibility with
respect to

holds under well-
behavedness conditions

≼

𝑞′

0 1

𝑠0 𝑠1

𝑞

1 0

𝑠0 𝑠1

A Sufficient Condition for Well-behavedness [OOPSLA21]

15

1

3

2

choose: win

phase 1 phase 2 phase 3

?

Phase-compatibility implies well-behavedness

phase-compatibility is
easy to show for many

applications

determined by local
analysis of protocol, no

composition of instances

11

∀𝑛. 𝑀 𝑛 ⊨ 𝜙

“Permissible” safety specifications

P is a “phase-compatible” GSP

DecidableUndecidable

Decidability of Parameterized Verification

Cutoffs for Parameterized Verification
GSPs and other fragments

17

Cutoffs for Efficient Parameterized Verification

18

∀𝑛 ≥ 𝑐. (𝑀 𝑐 ⊨ 𝜙 ⇔𝑀 𝑛 ⊨ 𝜙)

Minimal

19

𝑖 1 𝑡

2 3

hello!!

22

2 or more processes in 𝑡

Cutoffs for Efficient Parameterized Verification

20

𝑖 1 𝑡

2 3

hello!!

22

2 or more processes in 𝑡

Cutoffs for Efficient Parameterized Verification

21

𝑖 1 𝑡

2

choose(2): lose

24

3

2 or more processes in 𝑡

Cutoffs for Efficient Parameterized Verification

22

Cutoff-amenability conditions

𝑖 1 𝑡

2

choose(2): lose

24

Systems where the minimum number of processes needed to trigger
an 𝑚-process error is, in fact, 𝑚.

3

Cutoffs for Efficient Parameterized Verification

determined by local
analysis of protocol, no

composition of instances

Do we have Small Cutoffs in General?

23

no, even for broadcast
protocols we can get

very large cutoffs

quadratic cutoff in
examples of this form

towers of exponentials
with more complex

construction
states 𝑠1, … , 𝑠5 have transitions with 𝑎‼ to sink state 𝑠⊥

But: Experimental Evidence that Large Cutoffs are Rare [work in progress]

24

out of >20M random
protocols, less than 0.01%
have a cutoff greater than
the number of local states

Overall: 216.138 protocols

randomly generated
broadcast protocols

𝝓 = reachability of
“last” state

determine individual
cutoff w/ model checker

Cutoffs in our Example Applications

25

Small Cutoffs should be achievable for most Applications

26

very small cutoffs proved by
hand for our applications

very large cutoffs in
theoretical worst case, and in

artificial examples

random examples have
cutoffs 𝑐 ≤ 𝑃 in 99.99%

identification of classes of
GSPs with small cutoffs a

promising research direction

Mercury and Parameterized Synthesis
a language and tool to design correct systems

27

Distributed Store Example

28

Leader

Replica

Replica

29

process DistributedStore
variables
int[1,5] cmd
int[1,2] stored

actions
env
rz doCmd : int[1,5]
rz ackCmd : int[1,5]
rz ret : int[1,2]
br LeaderDown : unit

initial location Candidate
on Partition<elect>(All,1)
win: goto Leader
lose: goto Replica

location Leader
on recv(doCmd) do
cmd ≔ doCmd.payld

if(cmd <= 2 && stored = cmd)
goto Leader

else if(cmd = 3)
sendrz(ret[stored],doCmd.sID)

else
goto RepCmd

location RepCmd
on Consensus<vc>(All,1,cmd) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

sendrz(ackCmd[cmd],doCmd.sID)
goto Leader

location Replica
on Consensus<vc>(All,1,_) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

on recv(LeaderDown) do
goto Candidate

Mercury

Elect a leader

Serve client reads directly

Agree on command to replicate

Agree on command to replicate

Execute the agreed-upon
command

Confirm to client

Execute the agreed-upon
command

Elect a new leader when the
leader is down

Define variables and actions

30

process DistributedStore
variables
int[1,5] cmd
int[1,2] stored

actions
env
rz doCmd : int[1,5]
rz ackCmd : int[1,5]
rz ret : int[1,2]
br LeaderDown : unit

initial location Candidate
on Partition<elect>(All,1)
win: goto Leader
lose: goto Replica

location Leader
on recv(doCmd) do
cmd ≔ doCmd.payld

if(cmd <= 2 && stored = cmd)
goto Leader

else if(cmd = 3)
sendrz(ret[stored],doCmd.sID)

else
goto RepCmd

location RepCmd
on Consensus<vc>(All,1,cmd) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

sendrz(ackCmd[cmd],doCmd.sID)
goto Leader

location Replica
on Consensus<vc>(All,1,_) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

on recv(LeaderDown) do
goto Candidate

Mercury

31

process DistributedStore
variables
int[1,5] cmd
int[1,2] stored

actions
env
rz doCmd : int[1,5]
rz ackCmd : int[1,5]
rz ret : int[1,2]
br LeaderDown : unit

initial location Candidate
on Partition<elect>(All,1)
win: goto Leader
lose: goto Replica

location Leader
on recv(doCmd) do
cmd ≔ doCmd.payld

if(cmd <= 2 && stored = cmd)
goto Leader

else if(cmd = 3)
sendrz(ret[stored],doCmd.sID)

else
goto RepCmd

location RepCmd
on Consensus<vc>(All,1,cmd) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

sendrz(ackCmd[cmd],doCmd.sID)
goto Leader

location Replica
on Consensus<vc>(All,1,_) do
cmd ≔ vcCmd.decVar[1]

if(cmd <= 2) /*set*/
stored ≔ cmd

else if(cmd = 4) /*inc*/
stored ≔ stored + 1

else /*dec*/
stored ≔ stored - 1

on recv(LeaderDown) do
goto Candidate

Mercury
Variables

Actions

Broadcasts

Rendezvous

Locations

Event handlers

Receive

Send

Internal

Partition

Consensus

Parameterized Verification and Synthesis

32

Parameterized verification Parameterized synthesis

Specification
ϕ

Process FSM
P

∀n. M(n) ⊨ ϕ

Specification
ϕ

Process Sketch
P??

P completes P??

∀n. M(n) ⊨ ϕ

M(n) = P1∥ ⋯ ∥ P𝑛

Success P

Bug Fail

The Quicksilver Verification Tool

33

𝑃𝑀𝑒𝑟𝑐𝑢𝑟𝑦, 𝜙

phase

compatible?

𝑃𝐺𝑆𝑃, 𝜙
preprocess

no

feedback

cutoff

amenable?

yes

no

feedback
yes

compute cutoff 𝑐

𝑀 𝑐 ⊨ 𝜙?

no

feedback
yes

return “correct!”

Quicksilver: Benchmarks (again)

34

amend 𝜙

Quicksilver: Extension to Parameterized Synthesis [work in progress]

35

𝑃𝑀𝑒𝑟𝑐𝑢𝑟𝑦
?? , 𝜙

phase

compatible?

𝑃𝐺𝑆𝑃
?? , 𝜙

preprocess

no

cutoff

amenable?

yes

no yes

compute cutoff 𝑐

𝑀 𝑐 ⊨ 𝜙?
no yes

return 𝑃

resulting 𝑃 is correct by
construction, for any

𝑀(𝑛)

relieves the designer
from having to write

phase-compatible
protocol

symbolic encoding of
errors to quickly exclude
many faulty candidates

main challenges:

“right” choice of
cutoff lemmas

“guess” completion 𝑃

amend 𝜙

amend 𝜙

Summary: Parameterized Verification of Global Synchronization Protocols

