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Abstract

In this talk, we consider systems of multiple agents and reason about
their common knowledge of their environment. As the number of agents
is a parameter, we model a parameterised family of systems by a finite
length-preserving transducer, or for short, a finite deterministic automa-
ton on a product alphabet. In the simple setting of modal and pub-
lic announcement logics, one can compute the set of states satisfying a
given specification as a regular language, hence the regular model check-
ing (RMC) problem is decidable. However, reasoning on a parameterised
system might require new constructions, as for example a public announce-
ment operator iterated a finite but arbitrary number of times. In this new
setting, we explain how to resort to more advanced RMC techniques and
in particular to active learning techniques such as the L* algorithm pro-
posed by Angluin [4].

Joint work with AnthonyW. Lin initially published at AAMAS’21 [15].

1 Regular Kripke Structures

Throughout this presentation, we consider as an illustration the muddy children
puzzle in knowledge reasoning [10]: Suppose that there are a total of N children,
where M of them has a mud on their forehead. Each child can observe whether
another child’s status, but not himself. Initially, their father declares that there
is a muddy child (i.e. with a mud on their forehead). The rest of the protocol
goes in rounds: At each round, he asks them whether they know if they are
muddy, and they individually answer by yes or no. By unanimously answering
no, another fact is commonly deduced by the children: Even the muddy children
–who see one less muddy child than the others– cannot conclude on their own
state. After a few rounds (more precisely M rounds), all children will discover
the so-called common knowledge of which children (including themselves) are
muddy and which are not, regardless of the value of the parameters M and N
(e.g. see [10]).

Given an observation relation (model), one would like to check that a given
sequence of announcements (specification) will eventually lead to the expected
common knowledge. Moreover, we assume here that the number of involved
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(a) Family of Kripke structures, self loops are omitted.
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Figure 1: Muddy Children model encoding.

agents is a fixed but unknown parameter and would like to verify the model
for all possible values of this parameter. The muddy children puzzle described
above is therefore a typical example of a parameterised verification problem [6,
3, 11, 12] but with respect to epistemic properties.

We represent common knowledge in a system by a finite Kripke structure,
where transitions

a
⇝ between two states are interpreted as indistinguishability

by agent a. As an example, Figure 1a depicts a family of Kripke structures for
the muddy children puzzle. A state is a word of the set S = {m, c}∗ and is
labelled by a subset of the set of atomic propositions, here AP = {m}.

In the parameterised setting, we aim at providing a finite representation of
this parameterised family. In the spirit of regular model checking [1, 2, 7, 8, 17],

we resort to a regular encoding of the transitions
·
⇝, that is to say, length-

preserving transducer, or for short, a finite deterministic automaton. For-
mally, an indistinguishability transition s1

a
⇝ s2 between states s1 = x1 · · ·xn

and s2 = y1 · · · yn by agent a ∈ [1, n] is encoded by the word (x1, 0, y1) ·
(x2, 0, y2) · · · (xa, 1, ya) · · · (xn, 0, yn). The set of all such words in Σ×{0, 1}×Σ
turns out to be a regular language, which can be recognized by a finite automa-
ton as depicted in Figure 1b.

2 Parameterised Public Announcement Logic

In order to specify epistemic properties, we introduce now a variant of public
announcement logic (PAL). In order to account for the parameterised number
of agents, the logic allows for quantification over agents. A formula in parame-
terised public announcement logic (PPAL) is formally defined by the following
grammar:

φ ::= ⊤ | φ ∧ φ | ¬φ | ∃a : φ | a = 0 | a = b+ k | pa | [a]φ | [φ!] φ

Where a, b are index/agent variables, k ∈ N is any integral constant and p ∈ AP
is any atomic proposition.
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These notations and their semantics are directly inspired by [5]: Similarly
to the modal operator □, the formula [a]φ asks whether agent a knows that a

sub-formula φ holds, meaning that no matter what transitions
a
⇝ labelled by

a is taken, the formula φ holds in the target state. The public announcement
[φ!] ψ relates to the broadcast nature (!) of the operator: the model is updated
by only keeping states satisfying then φ then evaluating ψ.

As an example the sentence“after this announcement, every child knows
their own state”, is encoded by:

[∃i : mi ∧ ∀j, i ̸= j → ¬mj !] ∀i, [i]mi ∨ [i]¬mi

An important first result is that parameterised model checking problem for
PPAL is decidable: if the family M of Kripke structures is given as a length
preserving transducer, then one can compute the semantics of any PPAL formula
φ. More precisely, the set of satisfying states is a computable regular set which
can be queried for membership.

3 Active Learning Techniques

Finally, we introduce extensions of PPAL through the two following extra op-
erators: (a) Common knowledge by all agents: [Agt∗]φ; (b) Iterated Public
Announcement: [φ1!]

∗
φ2 ≡ ∃k : [φ1!] . . . [φ1!]︸ ︷︷ ︸

k

φ2.

The latter operator is necessary for expressing termination of the example
protocol: The children eventually conclude on their own status, but only after
an arbitrary but finite number (M) of public announcements, which cannot be
expressed by a fixed PPAL formula.

Although the introduced operators make the model checking problem un-
decidable, we provide semi-decision procedures thanks to the following obser-
vations: (a) Satisfaction of the [Agt∗] operator is essentially similar to safety
checking in regular model checking. It can therefore be addressed by active
learning techniques [9, 13]: Algorithms as Angluin L* [4] can indeed be instan-
tiated to reconstruct the set of safe states. Termination is ensured if, and only
if, the target set is regular, that is to say, when the formula has a regular se-
mantics; (b) Similarly, we provide a semi-decision procedure for computing the
semantics of a formula [φ!]

∗
ψ. The procedure involves the active learning of a

so-called disappearance relation for the formula ψ.
We conclude by discussing implementation details [14] and possible exten-

sions to dynamic epistemic properties. A worth mentioning extension is the
introduction of a more powerful public announcement operator to model sim-
ple version of the Dining Cryptographer protocol (joint work with Felix Thoma
from TU Kaiserslautern). We refer the readers to [16, 15] for complete references
(joint work with Anthony W. Lin).
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