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Continuous-time Markov chains (CTMCs) are a model of a dynamical
system that constitute the underlying semantics for real-time probabilistic
systems such as queuing networks [13], stochastic process algebras [8], and
calculi for systems biology [5, 9]. Model checking tools such as Prism [10]
and Storm [6] provide access to a number of powerful analysis techniques
for CTMCs. Both tools accept models written in the Prism language, an
expressive state-based language based on [1] that represents synchronous
and asynchronous components in a uniform framework that supports com-
positional design.

The outcome of the analysis of a Prism model is strongly dependent
on the parameter values used in each module, as they govern the timing
and probability of events of the CTMC describing its semantics. Consider
for instance a variant of the Susceptible-Infected-Recovered (SIR) model
proposed in [15] to describe the spread of COVID-19 in presence of lockdown
restrictions (cf. Fig. 1). The model is parametric in the variables beta,
gamma, and plock. Their values have to be empirically evaluated from a
number of partially-observable executions, typically in the form of a time
series that plots the number of infected individuals day-by-day.

Neither Prism nor Storm provide integrated support for this kind of
task, leaving the burden of estimating parameter values to the modeler.

A paradigmatic example is the modeling pipeline described in [15], where
the parameters of the SIR model in Fig. 1 are estimated based on a definition
of the model as ODEs, and later used in an approximation of the original SIR
model designed to reduce its state space. Such modeling pipelines require
high technical skills, are error-prone, and are time-consuming, thus limiting
the applicability and the user base of model checking tools.

In recent work [3], we address the problem of estimating parameter values
of CTMCs expressed as Prismmodels from a number of partially-observable
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ctmc

// SIR model paramaters

const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR

s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 →
beta ∗ s ∗ i ∗ plock/SIZE : (s′=s− 1)&(i′=i+ 1);

[ ] i>0 & r<SIZE →
gamma ∗ i ∗ plock : (i′=i− 1)&(r′=r+ 1);

endmodule

Figure 1: SIR model with lockdown from [15]

executions. The expressive power of the Prism language brings two techni-
cal challenges: (i) the classic state-space explosion problem due to modular
specification, and (ii) the fact that the transition rates of the CTMCs result
from the algebraic composition of the rates of different (parallel) modules
which are themselves defined as arithmetic expressions over the parameters.
We address the second aspect of the problem by considering the class of
parametric CTMCs, which are CTMCs where transition rates are polyno-
mial functions over a fixed set of parameters. In this respect, parametric
CTMCs have the advantage to cover a rich subclass of Prism models and
to be closed under the operation of parallel composition.

Following the standard approach, we pursue the maximum likelihood
estimate (MLE), i.e., we look for the parameter values that achieve the
maximum joint likelihood of the observed execution sequences O. For a sys-
tematic treatment of the non-convex surface described from the likelihood
function, we employ a theoretical iterative optimization principle known as
MM algorithm [12, 11]. This optimization technique generalizes the well-
known Expectation-Maximization (EM) algorithm [7] by employing an el-
egant theory of inequalities that allows one to derive simple, yet effective,
optimization procedures.

As the EM algorithm, our algorithm starts with an initial valuation of
the parameters x0 which is iteratively updated in a way that the likelihood is
nondecreasing at each step, that is L(O|xm) ≤ L(O|xm+1), until the likeli-
hood difference between the current and the previous hypothesis goes below
a fixed threshold ϵ. The update of each parameter xmi revolves around find-
ing a root of a univariate polynomial function Pi(y). The coefficients of Pi(y)
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are obtained by performing a forward-backward procedure in the same fash-
ion as the Baum-Welch algorithm [16]. Notably, under mild assumptions on
the format of the (multivariate) polynomial functions describing the transi-
tion rates of the parametric CTMC, the equation Pi(y) = 0 admits a simple
closed-form solution. A detailed description of the parameter estimation
procedures here mentioned can be found in [3] and have been implemented
in the Jajapy python library [17].

Jajapy also implements a number of methods to learn different types
of Markov models from partially-observable executions. These algorithms
include variants of the Baum-Welch algorithm [16] as well as Alergia [4,
14] for learning discrete-time Markov chains (MCs) and Markov decision
processes (MDPs). For the case of MDPs, which typically demand more
observations, Jajapy offers a model-based active learning sampling strategy
that chooses examples that are most informative w.r.t. the current model
hypothesis [2].
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