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Bayesian networks (BNs) [1] are probabilistic graphical models that are widely
used to reason under uncertainty. The key is that they reflect (in)dependencies,
e.g., the causality information between the entities. This enables (i) introducing
the knowledge from the application domain into the model and (ii) compactly
representing the joint probability distributions over the set of random variables.
The (in)dependencies between the variables are stored as a directed acyclic
graph. The probabilities are stored in conditional probability tables (CPTs):
each CPT row denotes a local probability distribution. In the normal setting,
the CPT entries are constant probabilities. However, not all the local probability
distributions are always known a priori.

Parametric Bayesian networks. We consider parametric Bayesian net-
works (pBNs) that have gained attention in many studies [2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15]: the CPT entries are no longer constant probabilities,
yet multivariate polynomials with rational coefficients over a set of unknown
parameters e.g., p and q. We consider two key tasks on pBNs: sensitivity analy-
sis and parameter tuning. Sensitivity analysis starts with computing sensitivity
functions: rational functions that are the solution to a given pBN query (e.g.,
a conditional probability) in terms of the network parameters. Parameter tun-
ing takes a further step and aims at synthesizing the unknown parameters with
respect to a given constraint. Parameters instantiations are joint values for
the unknown parameters, e.g., p = 0.3 and q = 0.55. We address two synthe-
sis problems. Let the hypothesis H, the evidence E, and the threshold λ be
given. Is there an instantiation for the parameters that make the constraint
ϕ : Pr(H|E) ≤ λ (or ≥ λ) hold? The problem is referred to as feasibility check-
ing. What is (a subset of) all instantiations that satisfy (or reject) the constraint
ϕ? The latter problem is related to parameter space partitioning.
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Motivation. Parameter tuning for pBNs is in general computationally hard
[16]. The existing tools and techniques in the literature only address limited sub-
classes of pBNs: (i) the pBN only contains a single (or a couple of) unknown
parameters at a time [11, 13, 17], (ii) the parameters only occur in a single CPT
[12] or in the same clique of the junction tree [10], and (iii) a parameter always
only occurs in a single probability distribution, i.e., no parameter dependencies
between multiple distributions are allowed. Such restrictions yield sensitivity
functions that are linear in each parameter and make the computation less ex-
pensive, yet such over-simplification is often problematical, e.g., for a pBN with
parameters all in a single CPT, the constraint of interest may be unsatisfiable,
but allowing the parameters in several CPTs yields satisfying instantiations for
the same constraint. Moreover, for BNs often we are interested in the problem
minimal distance parameter tuning : Let B be a BN that is parameterized to the
pBN B. For a given distance measure function, what are the instantiations that
satisfy the constraint ϕ while minimizing the distance from the original values
of the parameters in the original BN B? A pBN with parameters in multiple
CPTs often yields a smaller overall distance compared to when the parameters
are only in a single CPT [12].

Main objective. We aimed to ease the existing restrictions in the literature
and extend the spectrum of sensitivity analysis and parameter tuning on pBNs.

Parameter synthesis for Markov chains. Synthesizing the parameters
for Markov models has been significantly developed over the last two decades
[18, 19, 20, 21, 22, 23, 24, 25]. The techniques, e.g., range over the gradient-based
methods [26], convex optimization [23, 27], and region verification techniques.
The parameter lifting algorithm (PLA) [22] e.g., offers a simple technique to
verify the regions (e.g., 0.2 ≤ p ≤ 0.4 and 0.35 ≤ q ≤ 0.6) with respect to
the given constraint ϕ and also allows handling models with parameter depen-
dencies. We built upon those existing techniques from the probabilistic model
checking (PMC) [28, 29, 30] community to analyze pBNs.

Method. We proposed a translation from (p)BNs to (p)MCs that relates
(p)BN queries to reachability probabilities in (p)MCs. We proved the correct-
ness of our translation and implemented it as a prototypical tool on top of
the probabilistic model checker, Storm [31]. This enables (a) computing pBN
sensitivity functions by the existing algorithms in Storm such as state elimina-
tion, (b) tuning the parameters using the existing feasibility checking algorithms
such as Quadratically-Constrained Quadratic Program (QCQP) and Gradient-
Descent (GD), (c) partitioning the parameter space to satisfying and rejecting
subregions using parameter lifting algorithm (PLA). We performed an extensive
empirical study to evaluate the effectiveness and scalability of our techniques
and compared them to the pBN baseline tools: Bayes server and SamIam.
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Research questions. We focused our study on the following research ques-
tions.

• Can we perform sensitivity analysis on parametric BNs fast and with
arbitrary parameter dependencies?

• What are the decisive factors in the computation time of pBN sensitivity
functions using PMC techniques?

• How effective are the parametric MC feasibility checking techniques for
analyzing parametric BNs?

• How do the number of parameters influence the feasibility analysis time?

• What is the scalability of parameter space partitioning on pBNs?

• How does the coverage factor affect the partitioning time?

The main findings. In a nutshell, our main findings are as follows.

• Inference queries on (p)BNs correspond to reachability probabilities in
(p)MCs.

• Temporal logic yields a flexible technique for formalizing inference queries.

• Current techniques for computing solution functions in PMC scale much
better than existing techniques for parametric BNs: pBNs with hundreds
of parameters can be analyzed in a reasonable time.

• Parameter synthesis technique from PMC can deal with multiple param-
eters within a BN, possibly occurring in different CPTs.

• Gradient descent is the favorable technique for finding a suitable param-
eter instantiation and can deal with parametric BNs with up to hundreds
of parameters.

• Parameter space partitioning is very effective for parameter tuning for
parametric BNs with up to ten parameters.

Our results extend the conference paper [32]. The extended paper including the
new results is under publication in the Journal of Artificial Intelligence Research
(JAIR).
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