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Note: Part [8] of the paper we present here has been accepted and presented to the QEST conference of
Sept. ’22, in Warsaw, Poland. The editors, Erika Ábrahám and Marco Paolieri, proposed us to submit an
extension for the special issue of TOMACS ’23, which we accepted. This presentation would be related to
this extension, though we will reintroduce problematics and results from the QEST article.

Abstract

All scientific branches share the common concept of modeling. When a scientist studies a real-life system,
the first step he or she goes through is to build a model that gathers all the existing knowledge of the
target system. This model is then used as a proxy of the system it represents in order to analyze it, perform
simulations or predictions. In several fields, such as Biology, Chemistry, Physics or Engineering, models do
not represent a single system but are instead an abstraction for a family of systems that share common traits
but might exhibit some internal variability. This internal variability can either be left out by considering
that the model represents the “average” individual in the family, or taken into account inside of the model
through the use of non-determinism, probabilities or parametricity.

When considering parametric models, scientists have to go through a phase of parameterization, which
consists in confronting the model with experimental observations of the (family of) system(s) it represents
in order to find the parameter values that best fit this (family of) system(s). In most cases, parameterization
techniques are deterministic [14].

They lead to deterministic parameter values that best fit the experimental data, i.e. producing the best
fit for the “average” individual. In this paper, we instead focus on a technique that allows to select parameter
values that best fit under variability, i.e. that produce the best probabilistic fit for the whole family.

Parameterization, or parameter synthesis has been the topic of many works in the context of probabilistic
systems [4-7, 9]. Symbolic techniques such as parametric model checking [1, 3] are often difficult to use in
practice because they require automata-based models while real-life models are often expressed either with
computer programs or with differential equation models. Statistical Model Checking (SMC) [10], on the other
hand, is a simulation-based technique that allows to estimate, with formal guarantees, the probability that
a given (probabilistic) model satisfies a given property. Because it is simulation-based, it can be applied to
any stochastic model for which simulations can be performed. SMC has been successfully applied to perform
parameterization of real-life models expressed using several formalisms such as parametric Markov chains [2],
parametric Python programs [13], or even parametric Ordinary Differential Equation systems (ODEs) [11].
Unfortunately, the formal guarantees obtained through SMC are linked to the simulation space (i.e. the
produced traces) and not to the original model itself. When the model consists in sets of ODEs, as in [11],
numerical resolution methods are used in order to solve the ODEs and perform simulations, which means
that the formal guarantees obtained through SMC cannot apply to the original ODE model.

Our main contribution is to bridge the gap between the original ODE model and the results of the pa-
rameterization procedure by combining the statistical guarantees of SMC with the global approximation error
of standard numerical resolution methods. As in [11], we consider ODE models with structural parameters.
We assume that these models represent families of real-life systems that need to match some data through
simulation. We build on the logic proposed in [11] to express our properties of interest and also consider
expected reward properties that might be of interest in practice. We use SMC to grade parameter values by
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estimating the expectation of a given reward function for these values while taking internal variability into
account. We then extend our result by applying this technique to initial values of the associated Cauchy
problem, and prove we have the same kind of guarantees. Contrarily to what is done in [11], the accuracy of
this estimation is guaranteed w.r.t. the original ODE model.

To illustrate our results, we perform the parameterization of a state-of-the-art model taken from the
literature using our technique, as well as a study on initial condition, more precisely regarding the stability
of some critical values. In this context, and because modelers are often interested by this information in
practice, we propose a global evaluation of the value spaces that allows us to get a complete picture of the
adequacy of the values w.r.t. the given data. This choice is done by interest only, since our results are generic
and could be applied to any search technique, such as the local ones performed in [11].
Intuition. To give an intuition of our contribution, we provide an informal summary of the method we
present in this paper, in the context of parameterization, though the method is the same in the context
of stability analysis. Recall that, given a dataset and a parametric ODE system, the objective is to find a
solution to a parametric ODE system (i.e. parameter values) that satisfies a property ϕ w.r.t. the dataset,
which is, given a distance δ > 0, “the solution stays in a tunnel of radius δ around the data”; we also want
to acquire statistical guarantees on said result. The main issue is that we can only simulate our model by
solving the ODE system using numerical resolution methods. Hence, we cannot directly verify whether exact
solutions (x) of the system satisfy ϕ and instead have to rely on approximate solutions (y). We therefore
proceed as follows: we start by discretizing the set of parameter values into a grid; Then, we evaluate each
point of this grid using the procedure detailed below; Finally, we use the resulting scores to select the “best”
parameter values w.r.t ϕ. The score of a given parameter value λ is computed as follows, and illustrated in
figs. 1 and 2.

1. We set the parameter value to λ. Through a careful study of the ODE system, we give a bound on the
distance ε between exact (x) and approximate (y) solutions. We emphasize that this bound depends on
(1) the chosen resolution technique and (2) the chosen integration step. We show that this distance is
uniformly stable w.r.t. internal variability around λ, but also that it can be uniformly bounded on the
global set of solutions (i.e. independently of λ).

2. We propose two new properties ϕ1 and ϕ2 that will be verified on the approximate solutions y, and
depend on the above distance. This amounts to changing the size of the tunnel around the experimental
dataset. We compute (estimations of) the respective probabilities p1 and p2 and prove that the probability
p that x satisfies ϕ lies between p1 and p2.

3. We provide statistical guarantees of our estimation, i.e. a confidence interval for our estimation of p, and
use this estimation as the score for parameter value λ.
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Fig. 1. Tunnels corresponding to the properties
ϕ,ϕ1, ϕ2 and accepted simulations.
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Fig. 2. ϕ-accepted, ϕ2-accepted and rejected solutions.
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The study on stability proved to be a bit more complex, as we couldn’t use the usual mathematical
definitions [12] which rely on an infinity of values to be satisfied. Instead, we built a bounded definition of
stability, by requiring that the traces stay at an abitrary distance from the data for an arbitrary amount of
time. This definition, though less precise than the mathematical one, allows us to conduct the same study
as before, and experimentally exhibit a stable behavior in certain regions of the state space as we can see in
figs. 3 and 4. In these figures, the color represents the expected distance between the equilibrium xe and the
trace induced by each discrete value of the space: the darker the point, the closer the trace. Note that fig. 4
depicts the distance to the closest equilibrium, and is the combination of the studies on the stability of both
equilibria xe,1 and xe,2.

Fig. 3. Basin of attraction for xe = (−1, 0), the left
equilibrium of the system.

Fig. 4. Basins of attraction for xe,1 = (−1, 0) and
xe,2 = (1, 0), the two equilibria of the system.

It is worth noting that the underlying theory is generic: the integration method as well as the statistical
estimation method can be chosen arbitrarily as long as they provide the usual guarantees. In this paper, we
use Runge-Kutta and Monte-Carlo for the sake of example. We also emphasize that the nature of the problem
is also arbitrary: we chose two examples from the literature to have references regarding the coherence of
the results, but this method may be applied to any ODE model, including systems for which the theoritical
analysis proves too complicated, for instance in the case of systems of high order. Moreover, the genericity
of the method makes it readily usable for hybrid systems.
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