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Context

More and more research fields collect curve-like data
. Growth curves, spectrometry data, genomic data, weather data...

The term functional data gathers different types of data

Measured along time or space or any continuum
Sparse data
Dense data (high throughput)
With a common or not time grid

Madison Giacofci / Univ Rennes Données temporelles 25/03/19 4 / 42



Context

Historically, functional data appears around the 90’s

Their development has been caught between

Time series analysis
Longitudinal data analysis

As for time series and longitudinal data, they consist of observations

(y
(i)
1 , . . . , y

(i)
T ) ordered along time for the ith individual

Fundamental particularity :
the ideal unit of observations are curves

. Consider the whole curve as a single entity

. To consider functional quantities such as smoothness
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Ovarian cancer data
Petricoin et al, 2002

Mass spectrometry data

Related to the study of the proteome

. To investigate biological processes involved in the development of a
pathology

Proteomic spectra generated by
mass spectrometry
(MALDI-TOF technology)

Samples from 253 women under
2 conditions

Unaffected (91)
Affected by ovarian cancer
(162)

Each spectra contains 15154
ionised peptides defined by a
m/z ratio.
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Breast cancer data
Fridlyand et al. 2006

Microarray CGH data

Related to the study of the genome

. To detect possible chromosomal aberrations

Represent genomic profiles of breast
cancer tumor cells (compared to
healthy cells)

Samples from 66 women affected

Each spectra contains 2044 ratios of
copy number measurements

Individual spectra are piecewise
constant
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Ascites data
Anty et al, 2016

Mid-infrared spectrometry data

Fast and non-invasive method to obtain the molecular composition of
a biological fluid

Ascites : abnormal presence of
fluid in the abdomen

Samples from 219 patients
under 2 conditions

Infected liquid (46) : bad
prognosis (50% mortality after
2 years)
Non-infected liquid (173)

Each spectra is measured at 641
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Complex data

Such data are :

Complex

Structured

Possibly dependent

Intrinsically infinite dimensional

But most of the statistical questions are standard :

Uncovering homogeneous subgroup of responses . Clustering

Recover a mean pattern . Estimation/Smoothing

Quantify variations across individuals . Mixed-effects models

Predict a response variable . Supervised learning

And some others specific to the functional nature of data :

Alignment on individual curves . Deformation models

Identify discriminative portion of a signal . Domain selection

and many others...

Madison Giacofci / Univ Rennes Données temporelles 25/03/19 9 / 42



Summary

1 Introduction : functional data

2 Nonparametric functional regression

3 Modelling individual variability
Functional Mixed-Effects model
Estimation issue
Model-based clustering
Deformation models

4 Conclusion and Persectives

Madison Giacofci / Univ Rennes Données temporelles 25/03/19 10 / 42



Functional model (Ramsay et Silverman, 1997)

The first step is to go from a discrete to a continuous representation

. Referred as smoothing in the literature

. May be included in a more complex procedure
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Functional model (Ramsay et Silverman, 1997)

Data are seen as curves sampled on a fine grid (t1, . . . , tM) and corrupted
by noise, such that :

Y (tm) = µ(tm) + E (tm), E (tm) ∼ N (0, σ2
E )

. Goal : Recover function µ from noisy observations
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Nonparametric approach

In a nonparametric framework, no specified forms for involved
functions

. The problem lie in infinite dimensional framework

Popular approach

Projection on an adapted functional basis
. Set of pre-specified basis functions {φk , k ∈ N}

Examples

. Fourier basis

. Splines basis

. Wavelets basis
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Splines and Fourier basis

B-splines : the most popular functional basis

Polynomial functions
Adapted to smooth data : estimation based on roughness penalty

Fourier basis

Sine and cosine functions
Adapted to periodic data : good localisation in frequency
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Wavelets basis

Orthonormal basis of L2(R) generated by dilatations and translations of a
scaling function φ and a mother wavelet ψ such that :{

φj0k(t), k = 0, . . . , 2j0 − 1; ψjk(t), j ≥ j0, k = 0, . . . , 2j − 1
}

with φjk(t) = 2
j
2φ(2j t − k) and ψjk(t) = 2

j
2ψ(2j t − k)

Haar basis
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Wavelets basis

Decomposition in the basis
Any function f ∈ L2(R) is then expressed in the wavelet basis :

f (t) =
2j0−1∑
k=0

c∗j0kφj0k(t) +
∑
j≥j0

2j−1∑
k=0

d∗jkψjk(t)

where c∗j0k = 〈f , φj0k〉 and d∗jk = 〈f , φjk〉 are theoretical scaling and
wavelets coefficients
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Advantages and drawbacks

Strength of wavelets

. Fine modelling of curves with irregularities

. Strong connexion with Besov spaces

. Localisation in time and frequency

. Decorrelating properties

. Computational efficiency

. Sparse representation of regular signals

Drawbacks

. Designed for equally spaced design

. Common time grid for all individuals

. Dyadic number of points
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Discrete Wavelet Transform (DWT)

With discretely sampled signals Y = (Y (t1), . . . ,Y (tM)), we use the
Discrete Wavelet Transform (Mallat, 1989) :

W
[M×M]

Y
[M×1]

=

[
c
d

]
where W is an orthogonal matrix of filters (wavelet specific)

(c,d) are empirical wavelet coefficients such that :

c '
√
M × c∗

d '
√
M × d∗
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Wavelet representation

Functional nonparametric model
In the coefficient domain, the model is written as

WY = Wµ + WE

⇐⇒
[

c
d

]
=

[
α
β

]
+ ε

where ε ∼ N (0, σ2I)

Objective

From the linear representation in the wavelet domain, we want to find esti-
mates of (α,β)
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Dealing with spatial heterogeneity

Our goal is to reconstruct spatially inhomogeneous functions

General idea : to look at the irregularities at finer scales and stay on
coarser scales for smooth parts

. Requires non-linear estimates for optimal reconstruction

Done with thresholding estimators (Donoho and Johnstone, 1994)

. Shrink, kill or keep coefficients depending on a given threshold λ to
produce sparse estimates of wavelet coefficients
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Thresholding estimators

General idea : Shrink, kill or keep coefficients depending on a given
threshold λ

Hard thresholding (Keep or kill rule) djk1{|djk |<λ}
Soft thresholding (Shrink or kill rule) sign(djk)(|djk | − λ)+

Universal threshold : λ = σ
√

2 logM

Robust estimate of σ based on the MAD of the coefficients at the
finest resolution

These estimators achieve a near-minimax rate of convergence
(minimax within a logarithmic factor)

Many existing variants depending on the characteristics of data
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Multisample data

We now consider individual replicates, i.e. we observe n individual curves

Basic nonparametric model

Poor modelling for multisample data that can present strong
individual heterogeneity

CGH data
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Functional mixed effect model

More appropriate framework : Mixed-effects models

Modelling individuals variations around a main pattern by adding
individual functional random effects

Yi (tm) = µ(tm) + Ui (tm) + Ei (tm)

where Ui ∼ N (0,K (s, t)) is a centered Gaussian process independant of Ei .

Wavelet representation of the model[
ci
di

]
=

[
α
β

]
+

[
ν i

θi

]
+ εi

where εi ∼ N (0, σ2
ε I) and (ν i ,θi ) ∼ N (0,Γ)

. Resumes to a linear mixed effects model on wavelet coefficients
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Modelling the covariance of the random effects

A wide litterature on functional mixed effects models

Common essential point : modelling the matrix Γ

We want to specify the covariance of the process Ui (t) to :

. have a model with a ”simple” structure

. make fixed and random effects lie in the same functional space
(Antoniadis and Sapatinas, 2007)

Modelling choice justified by real data applications

Natural idea : To propose a model for K (s, t) and infer conditions on
matrix Γ. This leads in general to difficulties :

. to control the total number of parameters

. to control trajectories regularity
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Assumptions on matrix Γ

We prefer to specify Γ in the wavelet domain

First assumption Γ is assumed to be diagonal

. justified by the decorrelating property of wavelets (see Johnstone and
Silverman, 1997 for discussion)

Second assumption Diagonal terms of Γ decrease exponentially with the
scale j

[Γθ]jk = 2−jηγ2

. Ensure that both fixed and random effects lie in the same functional
space (see theorem of Abramovich et al, 1998)

Note that γ2 may depend on the level of decomposition and location (j , k) as γ2
jk

Madison Giacofci / Univ Rennes Données temporelles 25/03/19 26 / 42



Synthetic data
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Fixed effect estimation - Marginal approach

Model reinterpretation[
ci
di

]
=

[
α
β

]
+ ε̃i ε̃i ,jk ∼ N (0, γ2

jk2−jη + σ2
ε )

individual variability + noise

. Nonparametric regression problem in a heteroscedastic framework with
replicates

Extension of the universal threshold to an heteroscedastic setting
λ = σjk

√
2 logM (position dependant threshold)

Estimates of parameters σjk are given by empirical estimates thanks
to the N individual replicates

The heteroscedastic thresholding enjoys a near-optimal convergence
rate in the multisample setting, i .e. optimal within a logarithmic
factor in signal size M (G., Lambert-Lacroix, Picard, 2017)

Madison Giacofci / Univ Rennes Données temporelles 25/03/19 28 / 42



Simulation results

N = 100, M = 512

Control of the level of noise and individual deviations

Competed procedures

Usual homoscedastic thresholding with the universal threshold [Ho]
Heteroscedastic thresholding with the universal threshold [He]

Reconstruction error criteria : Mean Integrated Square Error (MISE)

Results on 200 repetitions : homoscedastic case

SNR = 1 SNR= 5
Ho He Ho He

Blocks 0.189 0.168 1.44e-3 1.43e-3
(0.016) (0.017) (2.5e-4) (2.5e-4)

Bumps 0.736 0.726 0.045 0.040
(0.024) (0.024) (1.25e-3) (1.25e-3)

Heavisine 1.203 1.204 0.079 0.078
(×10−2) (0.097) (0.104) (0.006) (0.006)

Doppler 5.658 5.622 0.201 0.188
(×10−4) (0.246) (0.274) (0.011) (0.011)
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Results on 200 repetitions : heteroscedastic case

SNR= 5
τ = 0.1 τ = 1

Ho He Ho He
Blocks 0.186 0.001 0.011 0.001

(0.054) (2e-4) (0.006) (2e-4)
Bumps 0.220 0.040 0.0573 0.040

(0.029) (0.001) (0.002) (0.001)
Heavisine 0.530 0.079 0.129 0.079
(×10−2) (0.016) (0.006) (0.008) (0.006)
Doppler 1.387 0.187 0.304 0.188
(×10−4) (0.136) (0.117) (0.015) (0.010)
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Curve clustering model

Natural extension : in a clustering framework, the N individuals are spread
among L unknown clusters such as

Yi (tm)|{ζi` = 1} = µ`(tm) + Ui (t) + Ei (tm) E (tm) ∼ N (0, σ2
E )

where ζi` = 1 if individual i is in class `

Wavelet representation of the model

Given that ζi` = 1,

[
ci

di

] ∣∣∣∣{ζi` = 1} =

[
α`

β`

]
+

[
ν i
θi

]
+ εi ;

εi ∼ N (0, σ2I)
(ν i ,θi )

T ∼ N (0,Γ)

Translate into a Gaussian Mixture Model in the wavelet domain

. Goal : To recover individual labels
(
ζi`
)`=1,...,L

i=1,...,N
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Model inference

Maximum Likelihood estimation is performed via the EM algorithm
with the following unobserved variables

. Label variables ζ

. Random effects (ν,θ)T

Dimension reduction step based on thresholding and aggregation
estimators

Model selection done via a BIC criterion

. Individual labels are then deduced by a Maximum A Posteriori (MAP)
rule
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Results on Mass spectrometry data

Need important pre-treatment step (matrix effects, peaks alignment),
computationally expensive (Antoniadis et. al, 2007)

Results on a range of M = 8192 positions (to discard effects of
matrix)

Method FCM FCMM FCMM.gr FCMM.jk
EER - global alignment 38% 24% 24% 23%
EER - group alignment 20% 21% 22% 0.4%

Conclusions

Random effects consideration improves results for a global alignment

Huge effect of peaks alignment

One mismatch when variances depend on positions
⇒ Suggest a sparse configuration of the random effects ?
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Results on CGH data

Existing approaches based on hierarchical clustering of segmentation
results (van Wieringen & van de Wiel (2008))

Inter individual variability has never been quantified on CGH data

On this dataset : existing clustering linked to survival data

Main conclusions

We find more subgroups than the original study (5 vs 3)

We retrieve the cluster associated with the best outcome (one
mismatch)

Posterior estimation of SNR and τU shows high level of noise and
individual variability (≈ 10−4)
⇒ Find cluster with biological signifiance will require much more

individuals
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Back on mass spectrometry data

Among the objectives : Identifying typical main profiles associated to
affected patients to enable early stage detection of a pathology.
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Modelling of phase deviations

Functional warped mixed model

Individual phase deviations modeled by adding nonlinear individuals
random warping functions

Yi (tij) = µ (wi (tij)) + Ui (wi (tij)) + Eij , Eij ∼ N (0, σ2)

wi (.) = w(.,θi ) are parametrized by individual random variables θi

Modelling of the warping functions wi

Monotonicity constraint : the functions wi are nondecreasing
diffeomorphisms

[Gervini and Carter (2014)] Using Hermite splines that offer a direct
link between knots and features

[Bigot (2013)] Using Ordinary Differential Equation based on a
reference function parametrized by cubic B-splines
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Inference in shape invariant functional mixed models

The model fits in the Non Linear Mixed Effects Models (NLMEM)
setting (Lindstrom & Bates (1990))

Nonobserved random effects (amplitude and phase deviations
parameters) considered as hidden data

We use EM algorithm for Maximum Likelihood estimation of the
parameters

Computation of the E-step
. Untractable because of the nonlinearity of warping functions

Several existing approaches to either

approximate the likelihood function (Lindstrom & Bates (1990))
stochastically approximate the expectations of interest (Kuhn &
Lavielle (2005))

We first focus on MCEM algorithm based on Monte-Carlo
approximations of the desired expectations
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Applications on simulated data

We compete three procedures

[Bigot13]
[Raket14]
Wavelet-based warped mixed model

Compared w.r.t the MISE criteria (Mean Integrated Square Error) on the
functional fixed effect.
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MISEs results - High deviations in phase and amplitude
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Conclusions

Conclusions

Flexible functional modelling for irregular curves with diverse sources
of variability

Related to standard models in the coefficient domain

Remaining questions

Supervised learning (PhD Marie Morvan in co-supervision)

Sparse estimation of functional random effects

Clustering in deformation models
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