
Times series History Kernelized time series averaging Applications Conclusion References

Kernelized time elastic averaging of time series

P-F. Marteau

EXPRESSION/IRISA/UBS

TS-Days/IRISA 25-26 mars 2019, Rennes

1/75

Times series History Kernelized time series averaging Applications Conclusion References

Plan
1 Time series

Definitions/Notations (among others)
Some examples
Time series averaging problem
Time series averaging problem

2 A brief history of time elastic matching
Maurice Fréchet
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Definitions/Notations

TIME SERIES are sequence of time stamped data,

Let U be the (discrete) time series data set,

An
1 = A(1)A(2)...A(n) ∈ U is a finite (discrete) time series of

size n

∀i,A(i) = (a(i), ta(i)) ∈ S × T , where S is a space set (set of
spatial dimensions, either digital or symbolic) and T is a time
set (an ordered set of timestamps),

we denote by Ω the empty time series (as well as the empty
sample),

thus U =
⋃∞

n=1(S × T )n⋃{Ω}.
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Some examples

Sequential data are ubiquitous and heterogeneous
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Averaging a set of time series

Why would we consider averaging time series in the first place?

Green computing

Clustering

Noise reduction

Study the variance and the individual deviation (model
temporal data)
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Averaging a set of time series

The problem Let S ⊂ U be a subset of time series.

Let δ(., .) a metric defined on U.

The centroid time series C of S is defined as:

Cδ = argmin
u∈U

∑
s∈S

δ(u, s)

⇒What choices for δ ?
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Matching time series

Importance of time series matching δ(., .)

Comparing time series is also an ubiquitous task in particular
to detect similar patterns, predict the future from the past,
cluster, classify or average temporal data, basically to extract
knowledge.

Unfortunately, in general, time series exhibit a high level of
variability due to noisy measurements, noise intrinsic to the
observed process, missing data, non-uniform sampling, time
warp, etc.

⇒ Going beyond Eulidean distance while introducing ”time
elasticity” is thus a long story.
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Maurice Fréchet

1878 – 1973

The Fréchet’s distance between the two curves is the length
of the shortest possible leash. [From Wikipedia]
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F (A,B) = Inf
α,β

Max
i∈[0,N]

{
d
(

A(α(i)), B(β(i))
)}

∀i , α(i) ≤ α(i + 1) and β(i) ≤ β(i + 1)

THE FRÉCHET’S DISTANCE (Fr’echet (1906)) between two
curves is the minimum length of a leash required to connect a
dog and its owner, constrained on two separate paths, as they
walk freely but without backtracking along their respective
curves from one endpoint to the other.
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Combinatorics

The size of the search space (α(.), β(.)) is directly related to the
Number of paths in a n ×m grid:

Delannoy’s numbers D(n,m)

Asymptotic behavior D(n, n) = c γn
√

n
(1 + O(n−1))

with γ = 3 + 2
√

2 ≈ 5.828 and c ≈ 0.5727

D(n, n)n=1,2,··· = 1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, · · ·
(sequence A001850 in the OEIS).

12/75

Times series History Kernelized time series averaging Applications Conclusion References

Richard Bellman

BELLMAN’S PRINCIPLE OF

OPTIMALITY: An optimal
policy has the property that,
whatever the initial state
and initial decision are, the
remaining decisions must
constitute an optimal policy
with regard to the state result-
ing from the initial decision
[Wikipedia].

1920-1984

Principle of Optimality

Dynamic Programming ≈ 1949-57 (Bellman (1957))

Application to optimal control
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Dynamic time warp alignment

from andrew.cmu.edu

Evaluated in O(n2)
14/75
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Dynamic Time Warping

δdtw (Ap
1,B

q
1 ) = min

π

∑

i

dLP(aπ(i)1 , bπ(i)2) (1)

δdtw (Ap
1,B

q
1 ) = dLP(ap, bq)

+ Min





δdtw (Ap−1
1 ,Bq

1 ) deletion
δdtw (Ap−1

1 ,Bq−1
1 ) substitution

δdtw (Ap
1,B

q−1
1 ) insertion

(2)

where dLP(ap, bq) is the Lp norm in Rk .

SPEECH RECOGNITION Velichko & Zagoruyko (Velichko and
Zagoruyko (1970))

WITH CORRIDORS Sakoe & Chiba (Sakoe and Chiba (1971))

LOWER BOUNDING Keogh & al., (Keogh et al. (2006))
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Some variants

For sequential data
GLOBAL ALIGNMENT Needleman & Wunsch (Needleman and
Wunsch (1970))
EDIT DISTANCE: Wagner & Fisher (Wagner and Fischer
(1974))
THE LONGEST COMMON SUBSEQUENCE Hirschberg
(Hirschberg (1975))
LOCAL ALIGNMENT Smith & Waterman (Smith and Waterman
(1981))
...

For time series
EDIT DISTANCE WITH REAL PENALTY (Chen & Ng Chen and
Ng (2004))
TIME WARP EDIT DISTANCE Marteau (Marteau (2008))
...
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General form of an elastic distance

δe(Ap
1,B

q
1 ) =

Min/Max





δe(Ap−1
1 ,Bq

1 ) + Γ(A(p)→ ΩB(q)) deletion
δe(Ap−1

1 ,Bq−1
1 ) + Γ(A(p)→ B(q)) substitution

δe(Ap
1,B

q−1
1 ) + Γ(ΩA(p)→ B(q)) insertion

where Γ(.) is the cost/gain of an elementary editing operation and
ΩX(i) is the empty symbol at position i of sequence X

A(p)→ ΩB(q) is interpreted as a deletion operation

A(p)→ B(q) is a substitution operation

ΩA(p) → B(q) is interpreted as an insertion operation
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Time elastic averaging of a set of time series with DTW

Cδdtw = argmin
u∈U

∑
s∈S

δdtw(u, s) ?

Problem complexity

Multiple alignments have been widely studied in
bioinformatics (Fasman and L. (1998)).

determining the optimal alignment of a set of sequences
under the sum of all pairs score scheme is a NP-complete
problem (Wang and Jiang (1994), Just and Just (1999)).

⇒ optimal solution cannot be found in reasonable time for
medium/large problems.

⇒ heuristic solutions.
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Time elastic averaging of a set of time series with DTW

Principle of DTW Barycenter Averaging (DBA) (Abdulla et al.
(2003), Hautamaki et al. (2008), Petitjean et al. (2014))
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Time elastic averaging of a set of time series with DTW

Iterative aggregation: DTW Barycenter Averaging (DBA)
(Abdulla et al. (2003), Hautamaki et al. (2008), Petitjean et al.

(2014))
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Time elastic averaging of a set of time series with DTW

Other approaches

Hierarchical ascendant agglomerative approach
(Niennattrakul and Ratanamahatana (2009)),

Canonical Time Warp (CTW) and a Generalized version of it
(GCTW) (Zhou and la Torre (2016)) that combines DTW and
CCA (Canonical Correlation Analysis,

and more ...
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Time elastic averaging of a set of time series with DTW

Criticism

Inaccuracies of the proposed heuristics due to ”hardness of the
problem (Niennattrakul and Ratanamahatana (2007))

Best alignment path⇒ lack of smoothness of the objective
function (lot of local minima)

DTW is not a metric (triangle inequality is missing). Impact?

⇒ Kernelization of time elastic distance, at least to smooth the
objective function.
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Kernelization of elastic distance

From elastic distances to elastic kernels

Given the importance of kernel approaches in machine learning,
we are led to consider the following questions:

can we derived elastic kernels from elastic distances such as
DTW?

if not, how can we construct kernels sufficiently closely
related to such distances such as to preserve their specific
properties?
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Kernel and definiteness

Definitions (Schoenberg (1938))

Let U be a non empty set. A function k : U × U → R is called
a positive (P.D.) definite kernel if and only if it is

1 symmetric
2
∑n

i,j=1 cicjk(xi , xj ) ≥ 0 for all n in N, (x1, x2, ..., xn) ∈ Un and
(c1, c2, ..., cn) ∈ Rn.

For P.D. kernels, the eigen values of any gram matrix are all
not negative.
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Kernel and definiteness

Properties

Closure

Sums of P.D. kernels defined on the same set are P.D. kernels.

Product of P.D. kernels defined on the same set are P.D.
kernels.

Mapping between spaces

Let U and Ũ two sets and define a map ϕ(.) : U → Ũ. If k is a P.D.
kernel defined on Ũ, then k(ϕ(u), ϕ(u′)) is a P.D. kernel on U.
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Kernel and definiteness

Benefice of positiveness

Allows to embed data in (high dimensional) inner vector
spaces (Reproducing Kernel Hilbert Space)

Gives access to a large family of Kernel approaches (K-PCA,
K-LDA, K-ICA, Spectral Clustering, SVM, etc.)

P.D. ensures that learning with kernel machines relates to a
quadratic convex problem (convergence toward a single
optimum)
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Kernel and definiteness

Distance substitution kernels (DK) (Haasdonk and Bahlmann
(2004)) are kernels composed from a distance (dissimilarity)
function. Let d be a dissimilarity or distance function and O an
origin element in set U, then the following quantities are DK:

kl(x , y) = 〈x , y〉Od = −1
2 (d(x , y)2 − d(x ,O)2 − d(y ,O)2)

kP(x , y) = (1 + γ〈x , y〉Od )p, ∀p ∈ N, ∀γ ∈ R+

knd (x , y) = −d(x , y)β, β ∈ [0, 2]

krbf (x , y) = exp(−γd(x , y)2), ∀γ ∈ R+

If kl is P.D., then kp, krbf are P.D. and knd is C.P.D.

Unfortunately DK constructed from an elastic distance (EDK) are
not PD.
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Regularizing the Gram matrix

Spectral methods attempt to directly modify the Gram matrix
K (i, j) obtained from non P.D. kernels (Wu et al. (2005), Chen et al.
(2009)) by:

changing the sign of the negative eigen values (flipping)

or shifting the set of eigen values by a minimal offset to make
it D.P.

Then the Gram matrix is reconstructed from the initial eigen
vectors and the new set of eigen values to get a D.P. matrix.

Other approaches: replace the Gram matrix by the closest
(Froebonius norm) P.D. matrix (Higham2002).

⇒ These spectral approaches are difficult to interpret and do not
show significant benefits (to my experience).
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A more direct and constructive approach

A conjecture is that the presence of the Min or Max operators
prevents the definiteness.

An approach to regularize EDK is to replace these Min or Max
operators by a summation (soft-min/max) operator leading to
cope with all the possible alignment paths instead of a single best
one.

String alignment kernel for protein homology Saigo et al.
(2004)

Global alignment kernel (Cuturi et al. (2007))

Regularized Edit Distance Kernels (REDK) (Marteau and
Gibet (2014))⇒ Kernel induced by an alignment map.
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Alignment map

An ordered alignment map, π, is a finite sequence of ordered
pairs of integers π(l) = (il , jl) satisfying

il ≤ il−1 + 1 and jl ≤ jl−1 + 1, ∀l ∈ 1, .., |π| − 1

il−1 < il or jl−1 < jl , ∀l ∈ {1, .., |π| − 1}
31/75
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Kernel induced by an alignment map

Any mapping π uniquely induces two projections in
Uπ = ((S × T ) ∪ {Ω})|π|, basically two vectorized (fixed length)
representations for any A,B ∈ U:

ϕπx : U→ Uπ and ϕπy : U→ Uπ

ϕπx (A) = ΩA(1) A(1) ΩA(2) A(2) A(3) A(4) · · ·
ϕπy (A) = A(1) A(2) A(3) A(4) ΩA(4) A(5) · · ·
ϕπx (B) = ΩB(1) B(1) ΩB(2) B(2) B(3) B(4) · · ·
ϕπy (B) = B(1) B(2) B(3) B(4) ΩB(4) B(5) · · ·

where ΩX(i) is the empty replacement symbol in X at position i
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Kernel induced by an alignment map
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Kernel induced by an alignment map

ϕπx (A) = ΩA(1) A(1) ΩA(2) A(2) A(3) A(4) · · ·
ϕπy (B) = B(1) B(2) B(3) B(4) ΩB(4) B(5) · · ·

Suppose that a local alignment P.D. kernel κ exists (for all editing
operation) then, the following kernel kπ(., .) is P.D. on Uπ,
kπ(ϕπx (A), ϕπy (B)) = κ(ΩA(1) → B(1))κ(A(1)→ B(2))

κ(ΩA(2) → B(3)) κ(A(2)→ B(4)) κ(A(3)→ ΩB(4))
κ(A(4)→ B(5)) · · ·

(Idem for kπ(ϕπx (A), ϕπx (B)), kπ(ϕπy (A), ϕπy (B)), and
kπ(ϕπy (A), ϕπx (B))).
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Kernel induced by an alignment map
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Regularizing EDK: R-Convolution theorem

David Haussler - (Haussler (1999))

K (x , y) =
∑

−→x ∈R−1(x)

∑
−→y ∈R−1(y)

k(−→x ,−→y )

R−1(x) and R−1(y) are respectively the set of parts of x and
y .

K (x , y) is P.D. iff k(−→x ,−→y ) is P.D. (Haussler (1999))
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Kernel induced by an alignment map

Given any mapping π and any kernel kπ defined on Eπ, one can
defines a symmetric kernel Kπ(A,B) on U2 as:

Kπ(A,B) =
∑

ϕ(A)∈Pπ(A)

∑
ϕ(B)∈Pπ(B)

kπ(ϕ(A), ϕ(B))

where Pπ(X ) = {ϕπx (X ), ϕπy (X )} are the set of parts of
sequence X .

Kπ(A,B) is a R-convolution kernel (Haussler (1999)).
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Summary of the results

1 If local kernel κ(x , y) = f (x → y) is P.D. on (S × T ) ∪ {Ω}
then kπ(X ,Y ) =

∏
i
κ(Xi → Yi) is P.D. on Uπ, ∀π ∈ Π

2 If kπ(., .) is P.D. on Uπ, then the R-convolution kernel Kπ(., .)
is P.D. on U.

3 If Kπ(., .) is P.D. on U for all π ∈ C, then
KC(., .) =

∑
π∈C⊆Π

Kπ(., .) is P.D. on U.
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Property : for KC(., .), the ”corridor” C does not need to
be dense

UCR Beef dataset: left Sakoe-Chiba ’optimal’ corridor, right all the
best DTW alignment paths (symmetrized), (Soheily-Khah and
Marteau (2019)).
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Exponential local kernel and probabilistic interpretation of
global kernel (Forward probability)

KC(X i
0,Y

j
0) ≈ ∑

π∈C⊆Π

Pπ(X i
0,Y

j
0)

Kπ(X i
0,Y

j
0) ≈ ∑

ϕ,ϕ′

∏
u

p(ϕ(X )u, ϕ
′(Y )u))) ≈ Pπ(X i

0,Y
j
0)

κ(x → y) = exp(−ν · (d(x , y))) ≈ p(x , y)
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Exponential local kernel and probabilistic interpretation of
global kernel (Backward probability)

KC(X i
n,Y

j
m) ≈ ∑

π∈C⊆Π

Pπ(X i
n,Y

j
m)

Kπ(X i
n,Y

j
m) ≈ ∑

ϕ,ϕ′

∏
u

p(ϕ(X )u, ϕ
′(Y )u))) ≈ Pπ(X i

n,Y
j
m)

κ(x , y) = exp(−ν · (d(x , y))) ≈ p(x , y)
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Exponential local kernel and probabilistic interpretation of
global kernel (Forward-Backward probability)

FBX ,Y (i, j) ≈ ∑
π∈C⊆Π

Pπ(X i
0,Y

j
0)× Pπ(X i

n,Y
j
m)

Sum of the probabilities of the global alignment paths that cross
cell (i,j).
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Forward-Backward alignment matrix example

20 40 60 80

5

10

15 -340
-320
-300
-280
-260
-240
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The utility of the Forward-Backward

Pi|j : Probability to align sample i given sample j

Pi|j ≈ FBX ,Y (i,j)∑
t FBX ,Y (t,j)
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The utility of the Forward-Backward

Expectation and Standard deviation of the samples of X that
are aligned with sample Y(j):
Ex(x |Y (j)) ≈∑m

t=1 X (t) · Pt|j

St(x |Y (j)) ≈
√∑m

t=1(X(t)−Ex(x |Y (j))2·Pt|j
m−1

Expectation and Standard deviation of the time (index) of
occurrences of the samples of X that are aligned with
sample Y(j):
Ex(t ′|Y (j)) ≈∑m

t=1 t · Pt|j

St(t ′|Y (j)) ≈
√∑m

t=1(t−Ex(t ′|Y (j))2·Pt|j
m−1
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Averaging a set of time series (iterative approach)

TEKA ALGORITHM

Let Y = {Y1,Y2, · · · ,YN} a set of time series and C0 an initial
centroid (the medoid of Y for instance).

Centroid value at index t after q iterations:
Cq(t) = 1/N

∑N
k=1 Ex(yk |Cq−1(t))

Time of occurrence of centroid value at time index t after q
iterations:
Tq(t) = 1/N

∑N
k=1 Ex(tk |Tq−1(t))

Similar derivations for the standard deviations.

Needs interpolation (resampling) to get a uniform sampling.
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Cylinder/Bell/Funnel example

c(t) = (6 + η) · χ[a,b](t) + ε(t)
b(t) = (6 + η) · χ[a,b](t) · (t − a)/(b − a) + ε(t)
f (t) = (6 + η) · χ[a,b](t) · (b − t)/(b − a) + ε(t)

χ[a,b] = 0 if t < a ∨ t > b, 1 if a ≤ t ≤ b,
η and ε(t) are N(0, 1),
a is uniformly drawn from [16, 32],
and (b − a) is uniformly drawn from [32, 96].

→ expected start and end time stamps are respectively 24 and 88,
→ expected shape duration is 64 samples.
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Cylinder/Bell/Funnel example
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Cylinder/Bell/Funnel example

DBA CTW TEKA
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Applications

Reducing the instance set

Noise reduction

Augmenting (Boostrapping) the instance set
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Reducing the instance set

Motivation: In a big data context, for lazy and costly classification
or regression models (e.g. k-NN), one can clusterize the training
dataset to represent it using a small set of centroids.
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Reducing the instance set

Comparative study using 45 data sets (UCR or UCI): classification
error rates evaluated on the TEST data set (in %) obtained using
the 1-NN classification rule

DATASET DTW-M DBA CTW1 CTW2 KRDTW-M TEKA
# Best Scores 1 7 0 9 6 27
# Uniquely Best Scores 1 5 0 7 5 23
Average rank 4.56 2.87 4.62 2.97 3.22 1.6

DTW-M, KRDTW-M, (medoids),
DBA, CTW1, CTW2 and TEKA (centroids).
A single medoid/centroid extracted from the training data set
represents each category.
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Noise reduction: synthetic dataset

The ”blinking star” signal

Xk (t) =

(
Ak + Bk

∞∑

i=1

δ(t − 2πi
6ωk

)

)
cos(ωk t + φk ) (3)

Yk (t) =

(
Ak + Bk

∞∑

i=1

δ(t − 2πi
6ωk

)

)
sin(ωk t + φk )

where Ak = A0 + ak , Bk = (A0 + 5) + bk and ωk = ω0 + wk , A0

and ω0 are constant and ak , bk , ωk , φk are small perturbation in
amplitude, frequency and phase respectively and randomly drawn
from ak ∈ [0,A0/10], bk ∈ [0,A0/10], ωk ∈ [−ω0/6.67, ω0/6.67],
φk ∈ [−ω0/10, ω0/10].
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Noise reduction: synthetic dataset

Top: clean signal
Bottom: a Gaussian noise with zero mean and variance one is
added to each instances of the 2D signal.
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Noise reduction: synthetic dataset

Euclidean DBA CTW TEKA
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Noise reduction: GPS trajectories data set
Pasi Fränti and Radu Mariescu-Istodor [first.last@uef.fi]

Averaging GPS segments (OpenStreetMap) https://www.mdpi.
com/journal/applsci/special_issues/GPS_segment
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Noise reduction: GPS trajectories data set
Pasi Fränti and Radu Mariescu-Istodor [first.last@uef.fi]

Averaging GPS segments (OpenStreetMap) https://www.mdpi.
com/journal/applsci/special_issues/GPS_segment
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Boostrapping the instance set

Training data augmentation by interpolating a curve improves the
accuracy of 1NN DTW and Deep Neural Nets (Forestier2017),
(Fawaz et al. (2018))
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Boostrapping the instance set: UCR SwedishLeaf-12
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Boostrapping the instance set: UCI CharTraj 3D

TEMP. PATTERNS X 3D-SHAPE
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Plan

1 Time series

2 A brief history of time elastic matching

3 Kernalized Time elastic averaging of a set of time series

4 Applications

5 Conclusion
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Conclusion/perspective

Time elastic averaging of set of time series

DTW is not necessarily the grail elastic distance: ”soft-max”
kernels exist too.

TEKA achieves a spatio-temporal decomposition, separating
the ”shape” and the temporal patterns.

Corridor/Sparsification of the alignment path search space
may reduce the quadratic complexity.
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Conclusion/perspective

Hot topics

Global alignment⇒ local alignment kernels:
avoiding aligning what obviously cannot (or should not) be
aligned (⇒ coping with gaps).

K-kmean (aggregating ”distant” data leads to stability
problems).

Learn the variance model from the data in boostrap
applications

Evaluate kernelized data augmentation in classification tasks
(DNN).

64/75

Times series History Kernelized time series averaging Applications Conclusion References

Thank you
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Kernel induced by an alignment map (Marteau and Gibet
(2014))

Properties
ϕπx (.) = ϕπ̄y (.)
ϕπy (.) = ϕπ̄x (.)
Kπ(A,B) = Kπ(B,A)
Kπ(A,B) = Kπ̄(A,B)

K xy
π (A,B) = kπ(ϕx (A), ϕy (B)) + kπ(ϕy (A), ϕx (B))

K xx
π (A,B) = kπ(ϕx (A), ϕx (B)) + kπ(ϕy (A), ϕy (B))

Kπ(A,B) = K xy
π (A,B) + K xx

π (A,B)
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