

Times series History Kernelized time series averaging Applications Conclusion References	Times series History Kernelized time series averaging Applications Conclusion References Averaging a set of time series
 Why would we consider averaging time series in the first place? Green computing Clustering Noise reduction Study the variance and the individual deviation (model temporal data) 	The problem Let $S \subset \mathbb{U}$ be a subset of time series. Let $\delta(.,.)$ a metric defined on \mathbb{U} . The centroid time series C of S is defined as: $C_{\delta} = \underset{u \in \mathbb{U}}{\operatorname{argmin}} \sum_{s \in S} \delta(u, s)$ \Rightarrow What choices for δ ?
Times series cooo boooco Matching time series History coooco High Alphications cooco Conclusion References cooco Conclusion References cooco Conclusion Co	7/75 Times series History Kernelized time series averaging Applications Conclusion References 000000000000000000000000000000000000
 Importance of time series matching δ(.,.) Comparing time series is also an ubiquitous task in particular to detect similar patterns, predict the future from the past, cluster, classify or average temporal data, basically to extract knowledge. Unfortunately, in general, time series exhibit a high level of variability due to noisy measurements, noise intrinsic to the observed process, missing data, non-uniform sampling, time warp, etc. 	 Time series A brief history of time elastic matching Maurice Fréchet Richard Bellman Dynamic Time Warping and some variants Time elastic averaging of a set of time series with DTW Kernalized Time elastic averaging of a set of time series
\Rightarrow Going beyond Eulidean distance while introducing "time elasticity" is thus a long story.	 Applications Conclusion

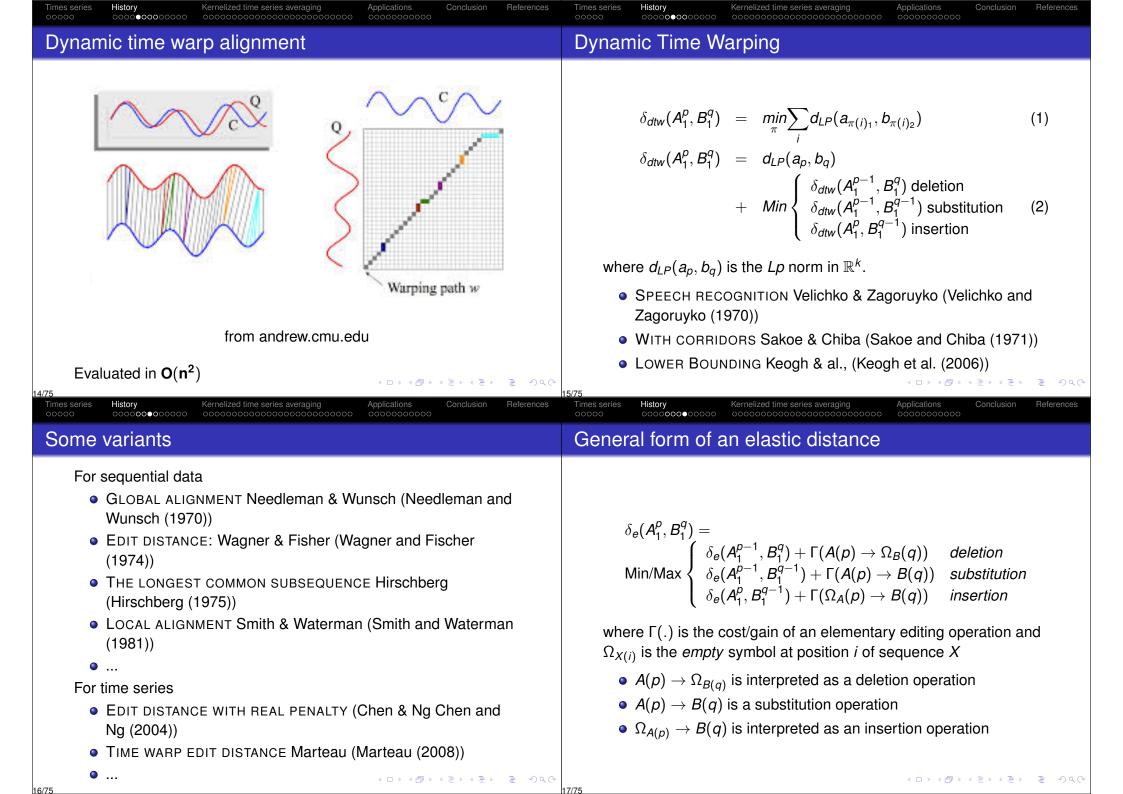
Times series History Kernelized time series averaging Applications Conclusion References Maurice Fréchet	Times series History Kernelized time series averaging Applications Conclusion References ooooo o€oooooooooooooooooooooooooooooo
$ \begin{tabular}{ c c } \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	 F(A, B) = lnf Max α,β i∈[0,N] {d(A(α(i)), B(β(i)))} ∀i, α(i) ≤ α(i + 1) and β(i) ≤ β(i + 1) THE FRÉCHET'S DISTANCE (Fr'echet (1906)) between two curves is the minimum length of a leash required to connect a dog and its owner, constrained on two separate paths, as they walk freely but without backtracking along their respective curves from one endpoint to the other.
(1075) (<□><륜><분><분> 분 옛익() 11/75
Times series History Kernelized time series averaging Applications Conclusion References Oo Oo Oo Oo Oo Oo Oo Oo Oo Combinatorics Oo Oo Oo Oo Oo Oo Oo Oo	Times series History Conclusion References
The size of the search space $(\alpha(.), \beta(.))$ is directly related to the Number of paths in a $n \times m$ grid: Delannoy 's numbers $D(n, m)$	BELLMAN'S PRINCIPLE OF OPTIMALITY: An optimal policy has the property that, whatever the initial state and initial decision are, the remaining decisions must

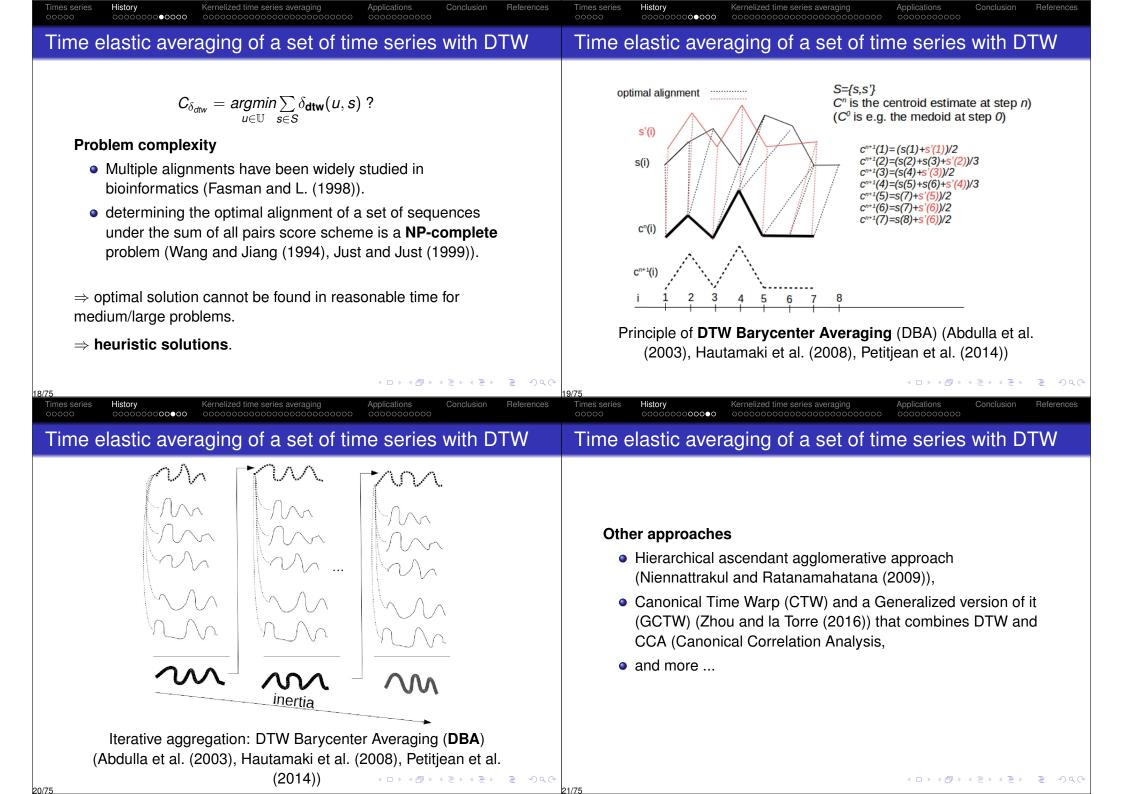
▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

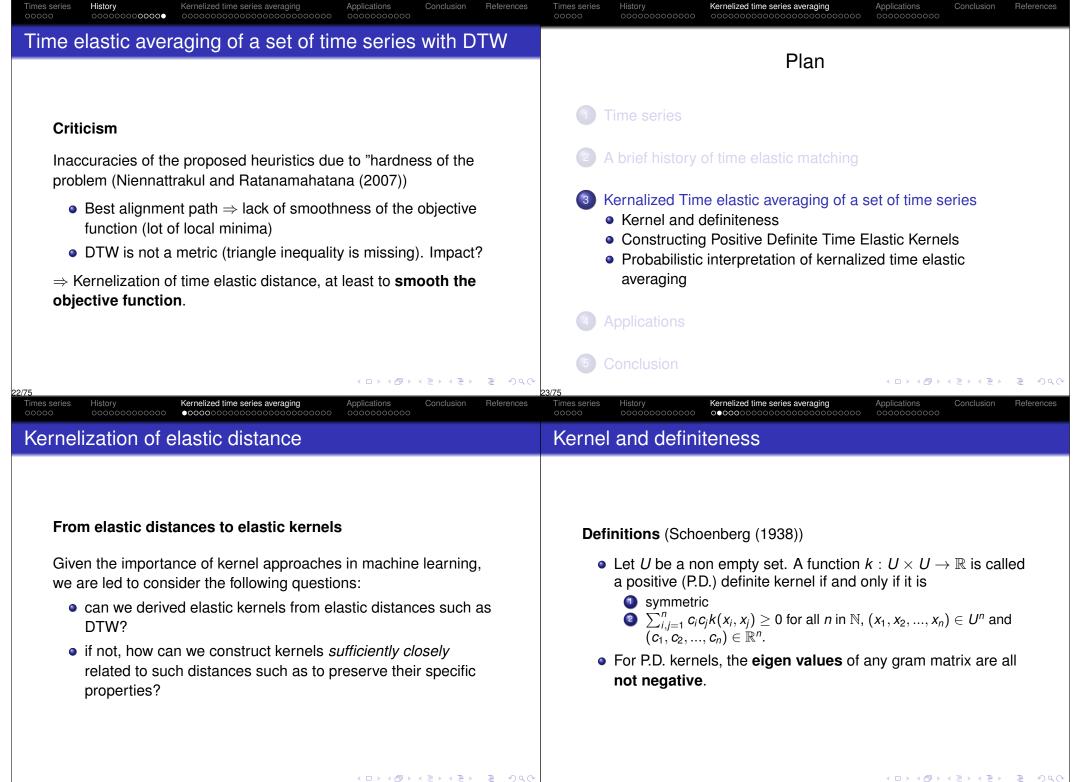
Asymptotic behavior $D(n, n) = \frac{c \gamma^n}{\sqrt{n}} (1 + O(n^{-1}))$

with $\gamma = \mathbf{3} + 2\sqrt{2} \approx \mathbf{5.828}$ and $c \approx 0.5727$

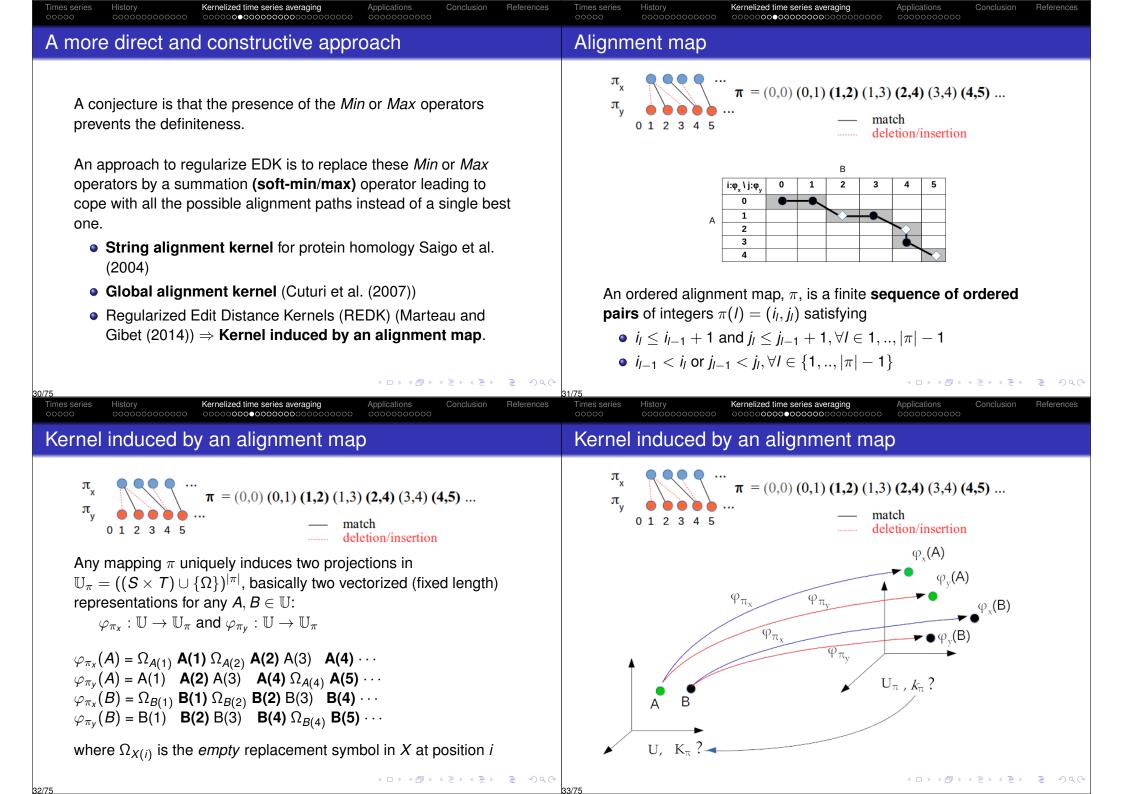
12/75

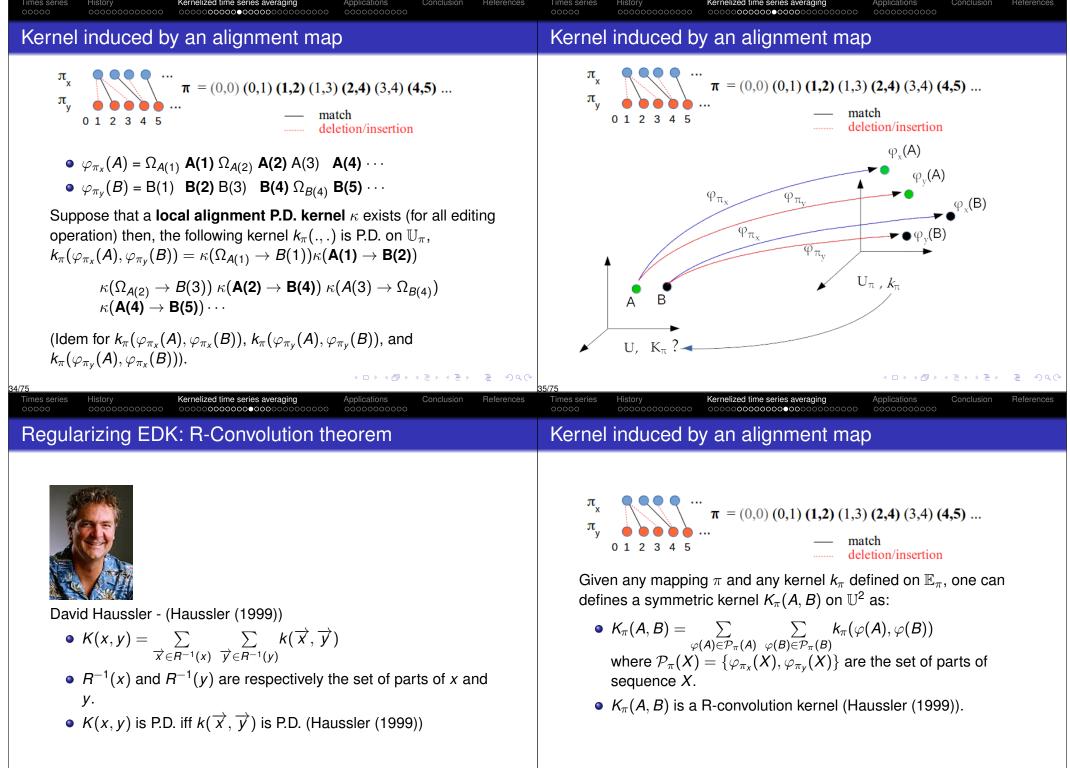

 $D(n, n)_{n=1,2,\dots} = 1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, \dots$ (sequence A001850 in the OEIS).

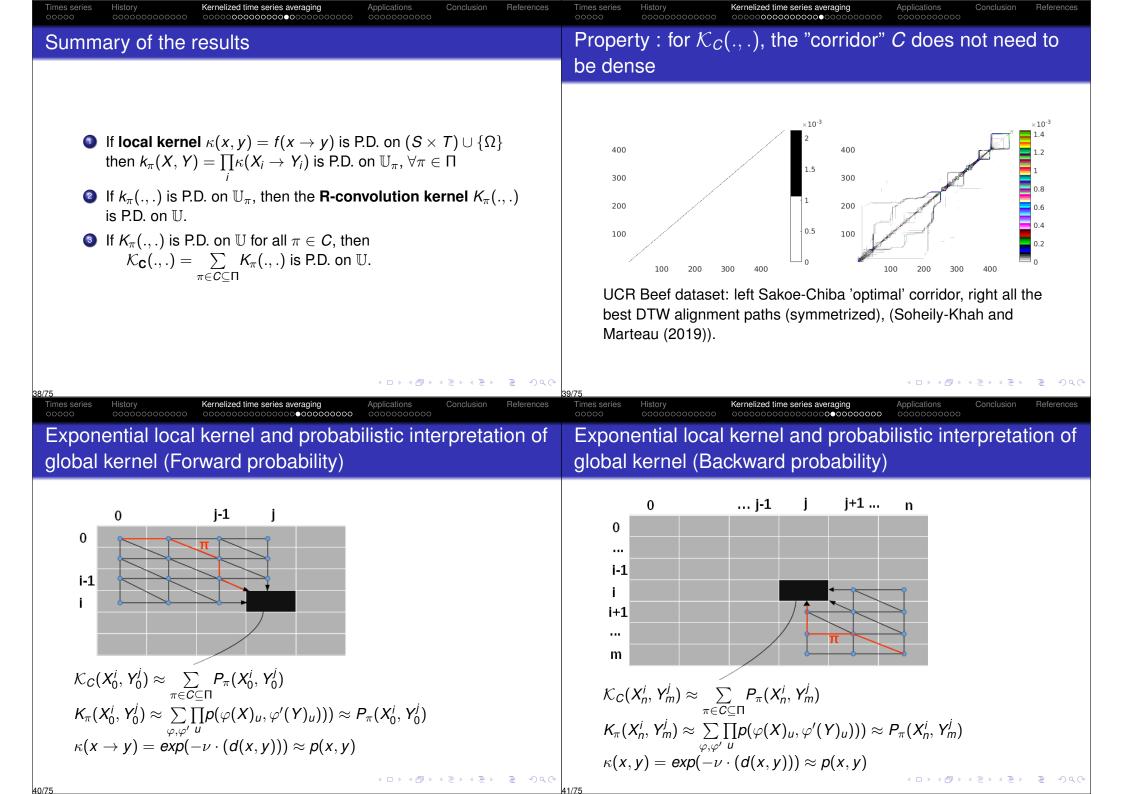


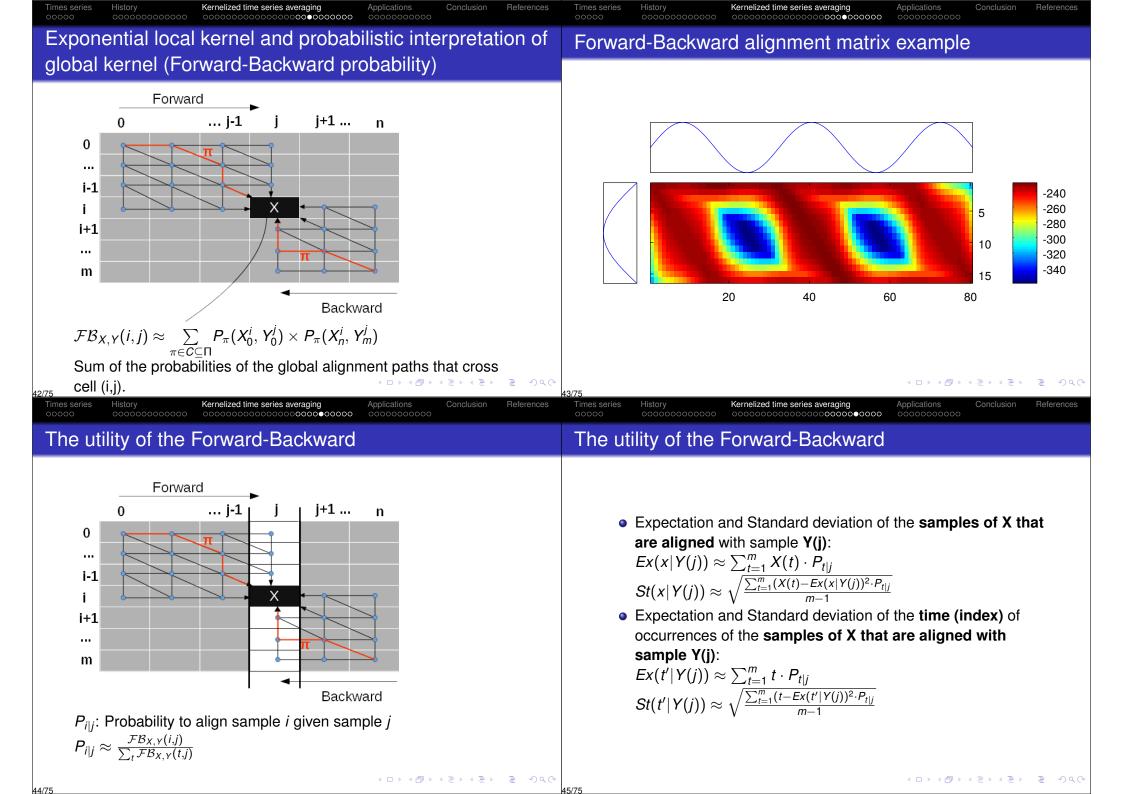

remaining decisions must constitute an optimal policy with regard to the state resulting from the initial decision [Wikipedia].

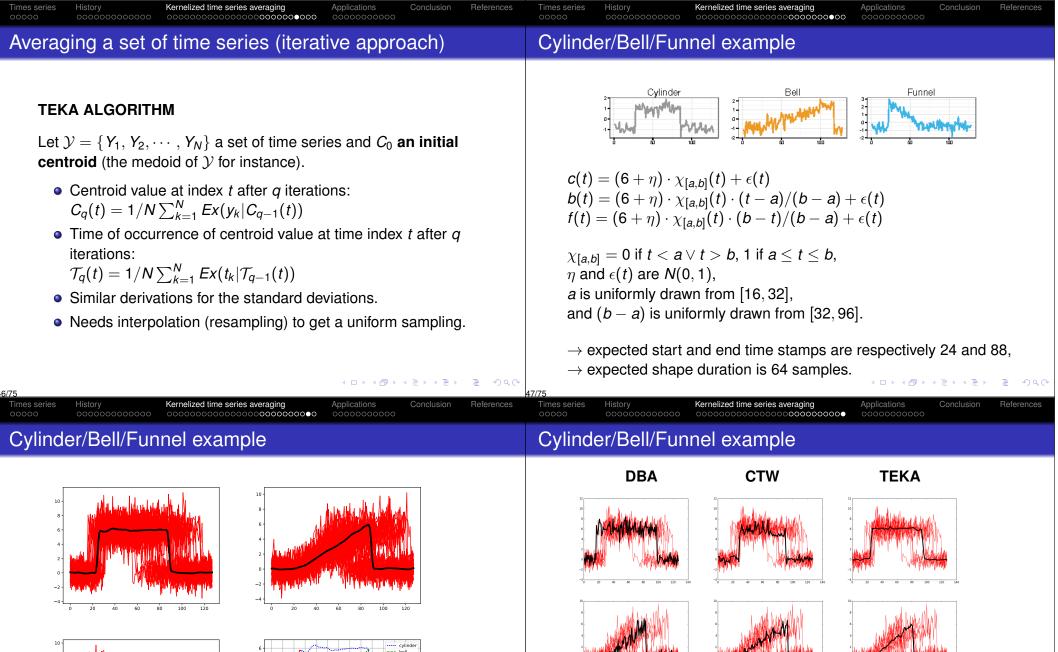
1920-1984

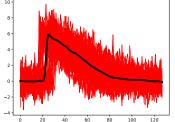

- Principle of Optimality
- Dynamic Programming \approx 1949-57 (Bellman (1957))
- Application to optimal control



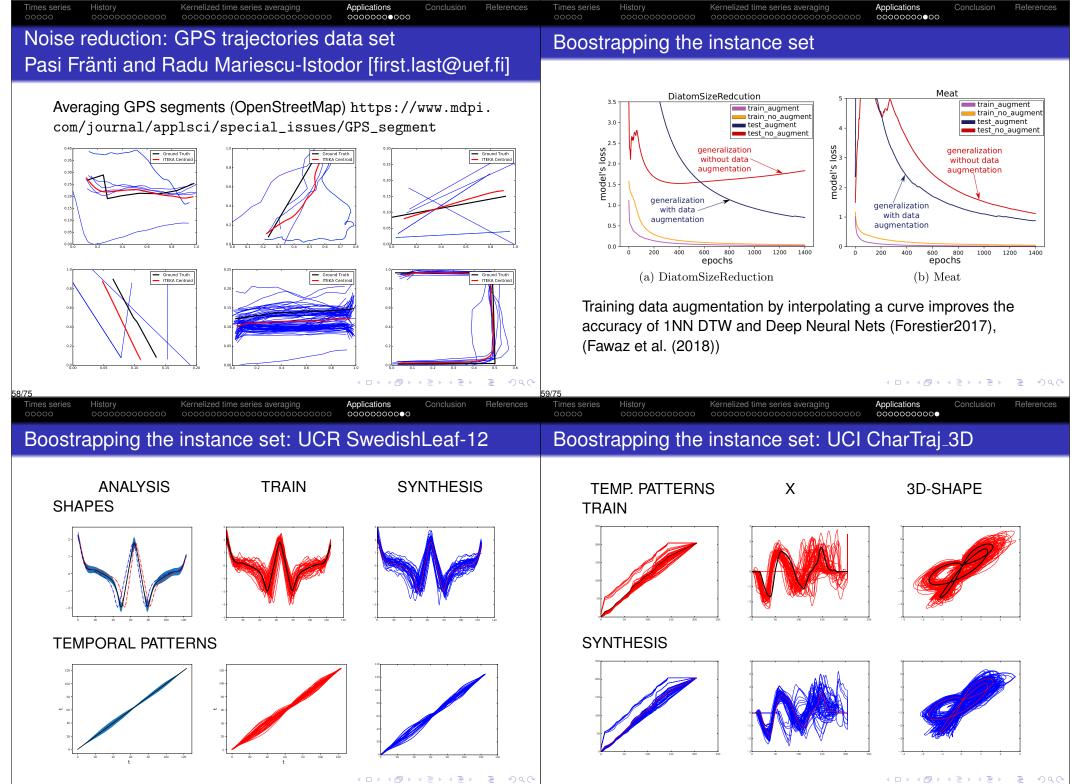


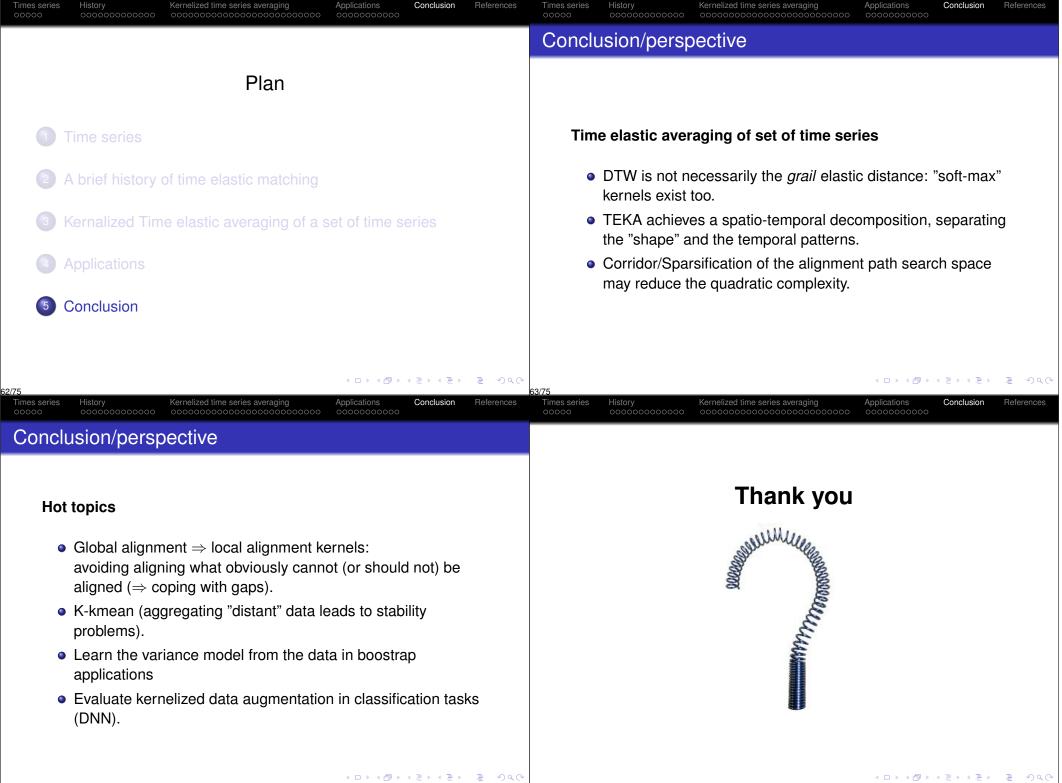

es series History Kernelized time series averaging Applications Conclusion References 000 00000000000 00€0000000000000000000	Times series History Kernelized time series averaging Applications Conclusion Reference 00000 000000000000000000000000000000000000
ernel and definiteness	Kernel and definiteness
Properties	Benefice of positiveness
 Closure Sums of P.D. kernels defined on the same set are P.D. kernels. Product of P.D. kernels defined on the same set are P.D. kernels. Mapping between spaces Let U and Ũ two sets and define a map φ(.) : U → Ũ. If k is a P.D. kernel defined on Ũ, then k(φ(u), φ(u')) is a P.D. kernel on U. 	 Allows to embed data in (high dimensional) inner vector spaces (Reproducing Kernel Hilbert Space) Gives access to a large family of Kernel approaches (K-PCA, K-LDA, K-ICA, Spectral Clustering, SVM, etc.) P.D. ensures that learning with kernel machines relates to a quadratic convex problem (convergence toward a single optimum)
・ロト・イラト・イラト・モラン ラークへで es series History Kernelized time series averaging Applications Conclusion References coococococococococococococococococococ	Conclusion Refere Conclusion Refe
ernel and definiteness	Regularizing the Gram matrix
Distance substitution kernels (DK) (Haasdonk and Bahlmann (2004)) are kernels composed from a distance (dissimilarity) function. Let <i>d</i> be a dissimilarity or distance function and <i>O</i> an origin element in set <i>U</i> , then the following quantities are DK: • $k_l(x, y) = \langle x, y \rangle_d^O = -\frac{1}{2}(d(x, y)^2 - d(x, O)^2 - d(y, O)^2)$ • $k_P(x, y) = (1 + \gamma \langle x, y \rangle_d^O)^p, \forall p \in \mathbb{N}, \forall \gamma \in \mathbb{R}^+$ • $k_{nd}(x, y) = -d(x, y)^\beta, \beta \in [0, 2]$ • $k_{rbf}(x, y) = exp(-\gamma d(x, y)^2), \forall \gamma \in \mathbb{R}^+$ If k_l is P.D., then k_p , k_{rbf} are P.D. and k_{nd} is C.P.D.	 Spectral methods attempt to directly modify the <i>Gram</i> matrix <i>K</i>(<i>i</i>, <i>j</i>) obtained from non P.D. kernels (Wu et al. (2005), Chen et al. (2009)) by: changing the sign of the negative eigen values (flipping) or shifting the set of eigen values by a minimal offset to make it D.P. Then the Gram matrix is reconstructed from the initial eigen vectors and the new set of eigen values to get a D.P. matrix. Other approaches: replace the Gram matrix by the closest (Froebonius norm) P.D. matrix (Higham2002).
Unfortunately DK constructed from an elastic distance (EDK) are not PD.	\Rightarrow These spectral approaches are difficult to interpret and do not show significant benefits (to my experience).





▲□▶▲□▶▲□▶▲□▶ ■ めんの





	Applications
	Applications
Plan	
1 Time series	
A brief history of time elastic matching	 Reducing the instance set
	Noise reduction
8 Kernalized Time elastic averaging of a set of time series	 Augmenting (Boostrapping) the instance set
4 Applications	
5 Conclusion	
<ロ> (日)	51/75
es series History Kernelized time series averaging Applications Conclusion References	Times series History Kernelized time series averaging Applications Conclusion Refe ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
educing the instance set	Reducing the instance set
	Comparative study using 45 data sets (UCR or UCI): classification error rates evaluated on the TEST data set (in %) obtained using
	the 1-NN classification rule
Motivation: In a big data context, for lazy and costly classification	
or regression models (e.g. k-NN), one can clusterize the training	DATASET DTW-M DBA CTW1 CTW2 KRDTW-M TEKA # Best Scores 1 7 0 9 6 27
dataset to represent it using a small set of centroids.	# Best Scores 1 7 0 9 6 27 # Uniquely Best Scores 1 5 0 7 5 23
	Average rank 4.56 2.87 4.62 2.97 3.22 1.6
	DTW-M, KRDTW-M, (medoids),
	DBA, CTW1, CTW2 and TEKA (centroids).
	A single medoid/centroid extracted from the training data set
	represents each category.

The "blinking star" signal $X_{k}(t) = \left(A_{k} + B_{k}\sum_{i=1}^{\infty}\delta(t - \frac{2\pi i}{6\omega_{k}})\right)\cos(\omega_{k}t + \phi_{k}) \qquad (3)$ $Y_{k}(t) = \left(A_{k} + B_{k}\sum_{i=1}^{\infty}\delta(t - \frac{2\pi i}{6\omega_{k}})\right)\sin(\omega_{k}t + \phi_{k})$ where $A_{k} = A_{0} + a_{k}, B_{k} = (A_{0} + 5) + b_{k}$ and $\omega_{k} = \omega_{0} + w_{k}, A_{0}$ and ω_{0} are constant and $a_{k}, b_{k}, \omega_{k}, \phi_{k}$ are small perturbation in amplitude, frequency and phase respectively and randomly drawn from $a_{k} \in [0, A_{0}/10], b_{k} \in [0, A_{0}/10], \omega_{k} \in [-\omega_{0}/6.67, \omega_{0}/6.67], \phi_{k} \in [-\omega_{0}/10, \omega_{0}/10].$	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
 < □ ▶ < 圕 ▶ < 릴 ▶ < 필 ▶ < 일 ▶ < 필 ▶ < 일 ▶ < 일 ▶ < 일 ▶ < 2 ▶ < 2	ල ල 55/75
imes series History Kernelized time series averaging Applications Conclusion References	00000 000000000 0000000000000000000000
Noise reduction: synthetic dataset	Noise reduction: GPS trajectories data set Pasi Fränti and Radu Mariescu-Istodor [first.last@uef.fi]
EuclideanDBACTWTEKA 0 <	Averaging GPS segments (OpenStreetMap) https://www.mdpi. com/journal/applsci/special_issues/GPS_segment INPUT OUTPUT

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

00 00000000000 000000000000000000000000	
bliography I	Bibliography II
<list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item>	 M. Cuturi, JP. Vert, O. Birkenes, and T. Matsui. A Kernel for Time Series Based on Global Alignments. In <i>Proceedings of</i> <i>ICASSP'07</i>, Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, pages II–413 – II–416, Honolulu, HI, April 2007. IEEE. K. H. Fasman and S. S. L. An introduction to biological sequence analysis. In <i>Comp. Methods in Mol. Biology,</i>, pages 21–42. In Salzberg, S.L., Searls, D.B., and Kasif, S., eds., Elsevier, 1998. H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. Data augmentation using synthetic data for time series classification with deep residual networks. <i>CoRR</i>, abs/1808.02455, 2018. URL http://arxiv.org/abs/1808.02455. M. Fr'echet. <i>Sur quelques points du calcul fonctionnel.</i> Th'ese, Faculte des sciences de Paris., 1906.
s series History Kernelized time series averaging Applications Conclusion References	Times series History Kernelized time series averaging Applications Conclusion References 00000 000000000000000000000000000000000000
bliography III	Bibliography IV
 B. Haasdonk and C. Bahlmann. Learning with distance substitution kernels. In C. Rasmussen, H. Bülthoff, B. Schölkopf, and M. Giese, editors, <i>Pattern Recognition</i>, volume 3175 of <i>Lecture Notes in Computer Science</i>, pages 220–227. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22945-2. doi: 10.1007/978-3-540-28649-3_27. URL http://dx.doi.org/10.1007/978-3-540-28649-3_27. D. Haussler. Convolution kernels on discrete structures. Technical report, University of California, Santa Cruz, 1999. Technical Report. V. Hautamaki, P. Nykanen, and P. Franti. Time-series clustering by approximate prototypes. In <i>Pattern Recognition, 2008. ICPR 2008. 19th International Conference on</i>, pages 1–4, Dec 2008. doi: 10.1109/ICPR.2008.4761105. 	 D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. <i>Communications of the ACM 18 (6)</i>, pages 341–343, 1975. W. Just and W. Just. Computational complexity of multiple sequence alignment with sp-score. <i>Journal of Computational Biology</i>, 8:615–623, 1999. E. J. Keogh, L. Wei, X. Xi, SH.Lee, and M. Vlachos. Lb_keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In <i>ACM International Conference on Very Large Databases</i>, pages 882–893, 2006. P. F. Marteau. Time warp edit distance with stiffness adjustment for time series matching. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i>, 31 (2):306–318, 2008.

Times series History Kernelized time series averaging Applications Conclusion References 00000 000000000000000000000000000000000000	Times series History Kernelized time series averaging Applications Conclusion References 000000000000000000000000000000000000
Bibliography IX	Kernel induced by an alignment map (Marteau and Gibet
	(2014))
 L. Wang and T. Jiang. On the complexity of multiple sequence alignment. <i>Jour. of Comp. Biology</i>, 1(4):337–348, 1994. G. Wu, E. Y. Chang, and Z. Zhang. Learning with non-metric proximity matrices. In <i>MULTIMEDIA '05: Proceedings of the 13th annual ACM international conference on Multimedia</i>, pages 411–414, New York, NY, USA, Nov. 2005. ACM. ISBN 1-59593-044-2. doi: http://doi.acm.org/10.1145/1101149.1101239. 	F $(Corridor limits) + (T + T + T + T + T + T + T + T + T +$
F. Zhou and F. D. la Torre. Generalized canonical time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):279–294, Feb 2016. ISSN 0162-8828. doi: 10.1109/TPAMI.2015.2414429.	• $\mathcal{K}_{\pi}^{xy}(A, B) = k_{\pi}(\varphi_{x}(A), \varphi_{y}(B)) + k_{\pi}(\varphi_{y}(A), \varphi_{x}(B))$ • $\mathcal{K}_{\pi}^{xx}(A, B) = k_{\pi}(\varphi_{x}(A), \varphi_{x}(B)) + k_{\pi}(\varphi_{y}(A), \varphi_{y}(B))$ • $\mathcal{K}_{\pi}(A, B) = \mathcal{K}_{\pi}^{xy}(A, B) + \mathcal{K}_{\pi}^{xx}(A, B)$
イロト(昂)(臣)(王) 王) のへで 75	(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)