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Time Series Data Mining Activities

Time series all around

@ Temporal
correlation
@ High dimen-
sionality

@ Noisy
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Time series forecasting
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Time series data base: our object of study

@ A set of time series
(usually big)

@ Different lengths
me @ Multidimensional

center forappled mathematics 7V - EHY



Time Series Data Mining Challenges
Time Series Data Mining Activities

Time series clustering. Examples

CLUSTERING
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Supervised classification of time series

TRAINING SET
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Anomaly/outlier detection
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Segmentation
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Outline of the presentation
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Time series clustering. Examples
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Clustering

Time series clustering: hierarchical, partitional

k-means it
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Distance between time series

Rigid Distance Flexible Distance
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Clustering

Euclidean Distance (ED)

\/Z/ (X = yi)?

@ Easy to compute

@ Only for series with the same distance v
@ Does not consider the time v

@ Sensitivity to noise v
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Clustering

Dynamic Time Warping (DTW)

e @ Takes into account the ordered
RORSEE sequence (time)
Samam= @ It can deal with series of different
: sizes
et @ Computationally expensive
AR O(min{m, n}?) v
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Euclidean Distance vs Dynamic Time Warping

a0 IS

EUCLIDEAN DTW
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Clustering

Remark on distances

More on elastic distances

@ Cheap versions of dynamic time warping (Sakoe-chiba,
bounding)

@ Edit distance for real sequences (EDR)
@ Mori et al 2016, R journal
@ On-line versions (Oregi et al 2019, PR)

Alternatives to calculate distances

@ Represent each series by means of a set of features and
calculate the distance between the features

@ Learn a parametric model for each series and calculate the
distance between the parameters >
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Clustering

Distances between series

@ There is not best distance (no free lunch)
@ Each problem requires a different distance

@ The distance to be used needs to be in agreement with our
knowledge about what is far and what is close

@ Hint: try with several distances

Challenge:
Design a method to the (semi)automatic selection of a distance
(e.g. Mori et al. 2016, TKDE)
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..Coming back to clustering: K-means

k-means
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Clustering

Remarks on clustering

@ Recent papers on the computation of a mean series

@ Alternate clustering methods: graph-based, spectral,
model-based,...

@ Multivariate time series clustering
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Outline of the presentation

9 (Early) Supervised Classification
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(Early) Supervised Classification

Supervised Classification of Time Series

General-purpose classifiers Specific TS classifiers
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(Early) Supervised Classification

General-purpose classifiers

@ Each series is considered an instance
@ Each time stamp is considered a feature
t b s ... t | C
X1 X2 X3 ... Xin | G4
Xo1  Xo2 X3 ... Xop | G2
Xm Xm2 Xm3 ... Xmn | C2
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General-purpose classifiers

@ Each series is considered an instance
@ Each time stamp is considered a feature
) 4 L) .. th C
X2 X111 X3 ... Xip | C
Xoo  Xo1 Xo3 ... Xop | C2
Xm2 Xm1 Xm3 --- Xmn | C2
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(Early) Supervised Classification

General-purpose classifiers

@ Each series is considered an instance
@ Each time stamp is considered a feature
) t 3 ... & | C
X2 X141 X413 ... Xip | ¢4
Xop X2t X3 ... Xop | C2
Xm2 Xmt Xm3 ... Xmn | C2

When to use general-purpose and when time-series specific?

sy ﬁ’
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(Early) Supervised Classification

What is relevant in TSC?

PROBLEM |

PROBLEM |
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(Early) Supervised Classification

What is relevant in TSC?

PROBLEM | PROBLEM I
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(Early) Supervised Classification

What is relevant in TSC?

PROBLEM | PROBLEM I

SHAPE
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(Early) Supervised Classification

A taxonomy of time series classification methods

@ Distance-based classifiers
@ Model-based classifiers
@ Feature-based classifiers
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(Early) Supervised Classification

Taxonomy of distance-based TSC (Abanda et al.
2019, DAMI

Distance based
TSC

—> k-NN
Distances are used combined
with k-NN classifiers
Distance
—>
features

Distances are used to obtain
a new feature representation
of the time series

Distance
kernels

Distances are used to obtain
a kernel

Global
distance features

Distances to other (global)
series are used as features

Local
distance features

Distances to local patterns of
the series are used as features

Embedded
features
Distances are used to embed the

series into a vector space and
obtain new features

Indefinite
—
distance kernels

Distances are used to obtain
indefinite kernels for time series
Definite
distance kernels
Distances are used to obtain PSD
kernels for time series

(bcam)
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(Early) Supervised Classification

1-Nearest Neighbour (1-NN)
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(Early) Supervised Classification

1-Nearest Neighbour (1-NN)

[y

@ Easy to understand

@ Better results with higher
number of series

@ Computational cost v

@ Challenge: What
distance???
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(Early) Supervised Classification

Distance-based. Distance features
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(Early) Supervised Classification

Distance-based. Distance features. Global
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(Early) Supervised Classification

Distance-based. Distance features. Global

@ Any general-purpose
algorithm could be

applied
VECTORS!
/" O\ @ It depends on the
& STancE T O . )
I B number of series in
M’&M : CLASSIFIER j training V
|0
wloa [0 a
— ° Compu.tatlonally
expensive v

@ Difficult to transfer to the
on-line setting v
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(Early) Supervised Classification

Distance-based. Distance features. Local
Shapelet 3

Shapelet 1 Shapelet 2

Ry AR A U

@ L could be distance or
N presence
_N @ Computationally expensive v
__J(L_ @ When the shapelets are
N L;; relevant extremely good
o
N

/ results
@ Easy to interpret
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(Early) Supervised Classification

Distance-based. Embedding

TS, TS,
TS, @y TS, | DTW(TS,,TS;) «+» DTW(TS,.TS,) | C,
TS [ C
2l DTW .
TS; | & —_— Cy
TS, C, TS, | DTW(TS,.TS;) «-- DTW(TS,.TS,) | C,
Training set Distance matrix
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Approximated distance matrix Embedded vectors
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(Early) Supervised Classification

Distance-based

TS, [
TS,
TS,

TS, | ¢

Training set

Distance matrix

. Embedding

Approximated distance matrix

@ Many classifiers defined
in Euclidean spaces

@ Computational
complexity v
@ Prediction v
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Embedded vectors

(beam) &

center for applied mathematios U7V - EHY



Time Series Data Mining Challenges

(Early) Supervised Classification

Distance Kernels

Tj
Ti g
o (@) K(xi, xj) Algorithm
©0p00 —_— Kij — [ f(z) = Eam(rwi)j
o o %
O Pattern function
Data

Kernel matrix

Indefinite

Definite (PSD) Kernel @ Theoretical properties are
@ All the SVM machinery lost v
works @ Easy to define
@ Difficult to define/check v @ Some methods can not be

applied v »
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(Early) Supervised Classification

Distance Kernels. Indefinite

Gaussian Distance Substitution Kernels

d(x, x')?

o2

GDS,4(x,x") = exp (— > where d = DTW, ..
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(Early) Supervised Classification

Feature-based time series classification
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(Early) Supervised Classification

Feature-based time series classification

Features

@ Statistics: mean,

*_ variance
e |7 e saieile @ Autorregresive
T ol 7 7 - 12|l o
o s it)e CLASW,ERJ coefficients
o |0 ] . .
ol R @ Fourier coefficients
el ][0 B B~ &l° .

@ Shift, trend, ...
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(Early) Supervised Classification

Feature-based time series classification

@ Representation
independent on the
number of series
[ eores T o
T i i ile J @ Interpretable
e | R - representation
m : R @ Challenge: what
features to use?
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(Early) Supervised Classification

Model-based time series classification

What is the most

probable model?
w0
s |[0] PREDICTION
MODEL |
Clai W °
e [|©
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(Early) Supervised Classification

Model-based time series classification

What is the most
probable model?

PREDICTION
MODEL |

o

PREDICTION
MODEL Il

PREDICTION
MODEL IIl

@ Good results with an
appropriate model

@ Choice of model v
@ Existence of model v
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(Early) Supervised Classification

time series classification

@ Early activity recognition
@ Early disease recognition in electrocardiograms
@ Early detection of sepsis in newborn

@ Early detection of failures in machines (predictive
maintenance)
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(Early) Supervised Classification

time series classification
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(Early) Supervised Classification

Early time series classificationc (Mori et al 2017,
DAMI, TNNLS)
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Early time series classification
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(Early) Supervised Classification

Early time series classification
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(Early) Supervised Classification

time series classification

CHALLENGE
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Outline of the presentation

Q Outlier/Anomaly Detection

save center for applied mathematics 7Y < EHY



Time Series Data Mining Challenges
Outlier/Anomaly Detection

Ouitlier vs Anomaly

Outliers meaning

Event of Unwanted
interest data
aim aim
Detect the Data
outlier itself cleaning

Improve the
data quality for
further analysis
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Outlier/Anomaly Detection

Type of outlier: point outlier
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Outlier/Anomaly Detection

Type of outlier: subsequence outlier
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Outlier/Anomaly Detection

Type of outlier: series outlier

15
1ok
d.,ﬁ\ .\ {.\
Wik
e AARAC VY ~ Time series 1
® Y \ Time series 2
>" ¢ \ - Time series 3
‘ e -~ Time series 4
5
0 25

75 100

.50
time

uuuuuuu



Time Series Data Mining Challenges
Outlier/Anomaly Detection

Outlier detection method: basic

o3

~ Real values
+ Prediction
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Outlier/Anomaly Detection

Outlier detection method: basic

Xt — X¢| > T Median

~ Real values
+ Prediction

save center for applied mathematics 7Y < EHY



Time Series Data Mining Challenges

Outlier/Anomaly Detection

Outlier detection method: basic

Xt — Xe| > 7 MAD

o2
2 .
/
g oy
T, 27T / ~ Real values
>0 N A + Prediction
2
[ 10 20 30 40 50

uuuuuuu



Time Series Data Mining Challenges

Outlier/Anomaly Detection

Outlier detection method: basic

’Xt — )A(t‘ > T Model

~ Real values
+ Prediction
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Outlier/Anomaly Detection

An overview of outlier/anomaly detection

Outlier detection
in time series

. Detection Processing
Input data Outlier type ] ek
Offline Online
Point Subsequence Time series
Univariate Multivariate - O
time series || time series Univariate | | Multivariate Snivariate REltvanate
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Outline of the presentation

e Conclusions and Future Work
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Conclusions and Future Work

Not too explored lands

Challenges

@ Time series subset selection

@ Learning in weakly environments: semi-supervised,
multi-label, crowd learning

@ Theoretical bounds on learning: assumptions on the
generating model
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Conclusions and Future Work

Collaboration

@ Usue Mori (UPV/EHU), Amaia Abanda (BCAM)
@ Ane Blazquez (lkerlan), Angel Conde (lkerlan)

@ Aritz Perez (BCAM), Izaskun Oregui (Tecnalia), Javier del
Ser (Tecnalia)

@ Josu Ircio (lkerlan), Aizea Lojo (lkerlan)
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