
Weakly supervised machine learning  
for time series

Romain Tavenard (Université de Rennes) 
 @rtavenar

 
TSdays

Rennes, March 26th, 2019

Weakly supervised machine learning  
for time series

R. Sperandio A. Lods T. Vayer M. Rußwurm Y. Wang

Part I 
tslearn: A Python ML toolkit for time series  
 
Part II  
Weakly supervised learning: why & how? 
 
Part III 
Beyond time series: structured data in general

Part I 
tslearn: A Python ML toolkit for time series

R. Tavenard - Weakly supervised ML for Time Series

tslearn: A Python ML toolkit for time series

• Install it (via pip or conda)
pip install tslearn

• Play with it
>>> from tslearn.datasets import UCR_UEA_datasets
>>> from tslearn.clustering import TimeSeriesKMeans  
>>>
>>> X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("TwoPatterns")
>>> print(X_train.shape)
(1000, 128, 1)  
>>>  
>>> km = TimeSeriesKMeans(n_clusters=3, metric="dtw")
>>> km.fit(X_train)  

�5

R. Tavenard - Weakly supervised ML for Time Series

tslearn: A Python ML toolkit for time series 
Samples from the gallery of examples [1/2]

�6

Link to online notebook

https://tslearn.readthedocs.io/en/latest/auto_examples/plot_sax.html

R. Tavenard - Weakly supervised ML for Time Series

tslearn: A Python ML toolkit for time series 
Samples from the gallery of examples [2/2]

�7

Link to online notebook

https://tslearn.readthedocs.io/en/latest/auto_examples/plot_kmeans.html

R. Tavenard - Weakly supervised ML for Time Series

tslearn: A Python ML toolkit for time series 
Feel free to contribute

• All contributions are welcome (via github)
• New feature requests
• Bug reports
• Bug fixes
• Improved documentation

• Most contributors are volunteers
• 1-year dev funding scheduled in ANR MATS  

(applications welcome anytime)

�8

Part II  
Weakly supervised learning: why & how?

Remote sensing &
ML

• Labelled training samples are…
• Costly to acquire
• Noisy

• Weakly supervised learning
• Domain adaptation  

(not covered in this talk)
• Across years
• Across regions
• Great stuff by Courty et al.

• Representation learning
• Self-supervised

approaches

Image from esa.int �10

http://esa.int

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS)  
[Lods et al., 2017]

• Self-supervised learning: generate supervised
information from the data itself

• Here: Learn a Shapelet Transform to mimic DTW
S1

S2

T1 T2

T3 T4

Mi,1

M
i,

2

T1

T2

T3

T4

DTWA
pp

ro
x.

di
st

an
ce

(T1, T2)
(T1, T3)

(T1, T4)
(T2, T3)

(T2, T4)

(T3, T4)

�11

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Dynamic Time Warping: a tool for time series analysis

• Dynamic Time Warping (DTW)
• Elastic similarity measure
• Invariant to time shifts
• Costly to compute

�12

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
k-means and Dynamic Time Warping

• Issue: k-means needs barycenters
• Explicit formulation in Euclidean Space
• No easy way for DTW

• Option 1: DBA k-means [Petitjean et al., 2011]
• Option 2: Soft-DTW [Cuturi & Blondel, 2017]

�13

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
State-of-the-art: Time Series Shapelets

• Shapelets
• Discriminant subseries
• Learnt in  

[Grabocka et al., 2014]

• Shapelet Transform  
[Hills et al., 2014]
• Efficient computation
• Invariant to time shifts

Definition 2: Subsequence. Given a time series T of length m, a
subsequence S of T is a sampling of length l ≤ m of contiguous
positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p ≤ m – l + 1.

Our algorithm needs to extract all of the subsequences of a certain
length. This is achieved by using a sliding window of the
appropriate size.
Definition 3: Sliding Window. Given a time series T of length
m, and a user-defined subsequence length of l, all possible
subsequences can be extracted by sliding a window of size l
across T and considering each subsequence Spl of T. Here the
superscript l is the length of the subsequence and subscript p
indicates the starting position of the sliding window in the time
series. The set of all subsequences of length l extracted from T
is defined as STl, STl={Spl of T, for 1 ≤ p ≤ m – l + 1}.

As with virtually all time series data mining tasks, we need to
provide a similarity measure between the time series Dist(T, R).
Definition 4: Distance between the time series. Dist(T, R) is a
distance function that takes two time series T and R which are
of the same length as inputs and returns a nonnegative value d,
which is said to be the distance between T and R. We require
that the function Dist be symmetrical; that is, Dist(R, T) =
Dist(T, R).

The Dist function can also be used to measure the distance
between two subsequences of the same length, since the
subsequences are of the same format as the time series. However,
we will also need to measure the similarity between a short
subsequence and a (potentially much) longer time series. We
therefore define the distance between two time series T and S,
with |S| < |T| as:
Definition 5: Distance from the time series to the subsequence.
SubsequenceDist(T, S) is a distance function that takes time
series T and subsequence S as inputs and returns a nonnegative
value d, which is the distance from T to S. SubsequenceDist(T,
S) = min(Dist(S, S')), for S' � ST|S|.

Intuitively, this distance is simply the distance between S and its
best matching location somewhere in T, as shown in Figure 5.

Figure 5: Illustration of best matching location in time series T
for subsequence S

As we shall explain in Section 3, our algorithm needs some metric
to evaluate how well it can divide the entire combined dataset into
two original classes. Here, we use concepts very similar to the
information gain used in the traditional decision tree [2]. The
reader may recall the original definition of entropy which we
review here:
Definition 6: Entropy. A time series dataset D consists of two
classes, A and B. Given that the proportion of objects in class A
is p(A) and the proportion of objects in class B is p(B), the
entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

Each splitting strategy divides the whole dataset D into two
subsets, D1 and D2. Therefore, the information remaining in the
entire dataset after splitting is defined by the weighted average
entropy of each subset. If the fraction of objects in D1 is f(D1) and
the fraction of objects in D2 is f(D2), the total entropy of D after

splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us to define
the information gain for any splitting strategy:
Definition 7: Information Gain. Given a certain split strategy
sp which divides D into two subsets D1 and D2, the entropy
before and after splitting is I(D) and Î(D). So the information
gain for this splitting rule is

Gain(sp) = I(D) - Î(D),
Gain(sp) = I(D) - f(D1)I(D1) + f(D2)I(D2).

As hinted at in the introduction, we use the distance to a shapelet
as the splitting rule. The shapelet is a subsequence of a time series
such that most of the time series objects in one class of the dataset
are close to the shapelet under SubsequenceDist, while most of
the time series objects from the other class are far away from it.
To find the best shapelet, we may have to test many shapelet
candidates. In the brute force algorithm discussed in Section 3.1,
given a candidate shapelet, we calculate the distance between the
candidate and every time series object in the dataset. We sort the
objects according to the distances and find an optimal split point
between two neighboring distances.
Definition 8: Optimal Split Point (OSP). A time series dataset
D consists of two classes, A and B. For a shapelet candidate S,
we choose some distance threshold dth and split D into D1 and
D2, such that for every time series object T1,i in D1,
SubsequenceDist(T1,i, S) < dth and for every time series object
T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An Optimal Split
Point is a distance threshold that

Gain(S, dOSP(D, S)) ≥ Gain(S, d'th)
for any other distance threshold d'th.

So using the shapelet, the splitting strategy contains two factors:
the shapelet and the corresponding optimal split point. As a
concrete example, in Figure 4 the shapelet is shown in red in the
shapelet dictionary, and the optimal split point is 5.1.
We are finally in the position to formally define the shapelet.
Definition 9: Shapelet. Given a time series dataset D which
consists of two classes, A and B, shapelet(D) is a subsequence
that, with its corresponding optimal split point,

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S))
for any other subsequence S.

Since the shapelet is simply any time series of some length less
than or equal to the length of the shortest time series in our
dataset, there are an infinite amount of possible shapes it could
have. For simplicity, we assume the shapelet to be a subsequence
of a time series object in the dataset. It is reasonable to make this
assumption since the time series objects in one class presumably
contain some similar subsequences, and these subsequences are
good candidates for the shapelet.
Nevertheless, there are still a very large number of possible
shapelet candidates. Suppose the dataset D contains k time series
objects. We specify the minimum and maximum length of the
shapelet candidates that can be generated from this dataset as
MINLEN and MAXLEN, respectively. Obviously MAXLEN ≤
min(mi), mi is the length of the time series Ti from the dataset, 1 ≤
i ≤ k. Considering a certain fixed length l, the number of shapelet
candidates generated from the dataset is:

)1(��¦
�

lm
DT

i

i

So the total number of candidates of all possible lengths is:

0 10 20 30 40 50 60 70 80

S T
best
matching
location

Illustration from [Ye & Keogh, 2009]

�14

Illustration from [Grabocka et al., 2014]

0 30
−1

0

1

S
1

0 30
−2

0

2

S
2

0 100 200
−2

0

2

T
1

0 100 200
−2

0

2

T
2

0 100 200
−2

0

2

T
3

0 100 200
−2

0

2

T
4

0.1 0.14 0.18

0.03

0.06

0.09

||T∗ − S1||2
||
T
∗
−
S
2
||
2

Shapelet−transformed data

T4

T3

T2
T1

Figure 1: An illustration of two shapelets S1, S2 (leftmost plots) learned on the Coffee dataset. Series’ distances to shapelets can optimally
project the series into a 2-dimensional space, called the shapelet-transformed representation [10] (rightmost plot). The middle plots show the
closest matches of the shapelets on series of two classes having light-blue and black colors.

medical and health informatics, interpretable shapelets have been
used to enable efficient early classification of time-series [16, 15].

In comparison to the state-or-the-art methods, we propose a novel
method that learns near-to-optimal shapelets directly, without the
need to search exhaustively among a pool of candidates extracted
from time-series segments.

3. PROPOSED METHOD

3.1 Definitions and Notations

3.1.1 Time-Series Dataset
A time-series dataset is composed of I training instances and

for notation ease we assume that each series contains Q-many or-
dered values, even though our method can operate on variable se-
ries lengths. The dataset is defined as T I×Q, while the series target
is a nominal variable Y ∈ {1, . . . , C}I having C categories.

3.1.2 Sliding Window Segment
A sliding window segment of length L is an ordered sub-sequence

of a series. Concretely, the segment starting at time j inside the
i-th series is defined as (Ti,j , . . . , Ti,j+L−1). There are totally
J := Q − L + 1 segments in a time series provided the starting
index of the sliding window is incremented by one.

3.1.3 Shapelets
A shapelet of length L is simply an ordered sequence of val-

ues from a data structure perspective. Nevertheless, shapelets se-
mantically represent intelligence on how to discriminate the target
variable of a series dataset. The K-most informative shapelets are
denoted as S ∈ R

K×L.

3.1.4 Distances Between Shapelets and Series
The distance between the i-th series Ti and the k-th shapelet Sk

is defined as the minimum distance Mi,k (shown in Equation 1)
among the distances between the shapelet Sk and each segment j
of Ti [17, 18]. Informally speaking, it is the distance of a shapelet
to the most similar series segment, as shown in Figure 1.

Mi,k = min
j=1,...,J

1
L

L
∑

l=1

(Ti,j+l−1 − Sk,l)
2 (1)

3.1.5 Shapelet Transformation
Minimum distances to shapelets can be characterized as a trans-

formation of the time-series data T ∈ R
I×Q into a new represen-

tation M ∈ R
I×K [10]. Such a transformation reduces the di-

mensionality of the original time-series, because typically K < Q.

General purpose classifiers (e.g.: SVMs, Bayesian Network, . . .)
have been recently shown to achieve high prediction accuracy over
the new representation M [8].

3.1.6 Logistic Sigmoid Function
The logistic sigmoid function is an S shaped instance of the lo-

gistic function and is defined as σ(Y) =
(

1 + e−Y
)−1

. We are
going to use the sigmoid function for the prediction of target vari-
ables via a logistic regression loss.

3.2 A Novel Principle
In this paper we propose a novel principle in learning time-series

shapelets. Instead of searching among possible shapelet candidates
from the series segments [17, 10], we propose a formal method
that can directly learn optimal shapelets without needing to explore
all possible candidates. Our principle can be summarized in two
steps: (i) Start with rough initial guesses for the shapelets, (ii) Iter-
atively learn/optimize the shapelets by minimizing a classification
loss function. In order to conduct the shapelet optimization, we de-
fine a novel classification model that is differentiable with respect
to shapelets. Therefore, shapelets can be updated in a stochastic
gradient descent optimization fashion, by taking steps towards the
minimum of the classification loss function (i.e. towards maximal
prediction accuracy).

3.3 Objective Function
For the sake of simplicity, the model introduced in this Section

will be focused only on binary targets Y ∈ {0, 1}I and a fixed
shapelet length L. A general version of the model, with extended
properties, is described Section 5.

3.3.1 Learning Model
Since the minimum distances M are the new predictors in the

transformed shapelets space, a linear learning model can predict
approximate target values Ŷ ∈ R

I×K via the predictors M and
linear weights W ∈ R

K (plus bias W0 ∈ R), as shown in Equa-
tion 2.

Ŷi = W0 +

K
∑

k=1

Mi,kWk, ∀i ∈ {1, . . . , I} (2)

3.3.2 Loss Function
In this paper we are going to exploit the logistic regression classi-

fication model, because it provides an option to interpret predicted
binary targets as probabilistic confidences. Such a probabilistic in-
terpretation will ensure extending our approach to the multi-class
case in Section 5. The logistic regression operates by minimizing

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Schematic view of our model

�15

3.2. Link between CNNs and LTS 67

Time Series

"

Convolution

Feature Maps

• •

"

Min
Pooling

•

"

Fully
Connected

Predictions

Figure 3.6 – Learning Time Series Shapelets as a CNN, with three shapelets
(filters) and five classes.

1. First, compute the distance between ⌧ j
i and sk for each time series

and each shapelet (i = 1, 2, . . . , N and k = 1, 2, . . . ,K) with j 2

{1, 2, . . . , n�L+1} such that we compute the distance between all the
possible subseries with each shapelet. Shapelets from LTS are equiv-
alent to filters of a CNN convolution step, computing the distance
between shapelets and each subsequence of a time series thus cor-
responds exactly to a convolution layer of a CNN. For LTS, the convo-
lution exploits the temporal relationship between neighboring points,
which is equivalent to a convolution applied on an image which ex-
ploits the spatial relationship between neighboring pixels. Indeed, the
different subsequence correspond to smaller series extracted at regular
step i.e. using a sliding window technique.

2. Then, we select the minimal distances between xi and sk for i 2

{1, 2, . . . , N} and k 2 {1, 2, . . . ,K}. This step corresponds to a min-
pooling layer.

3. Finally, we use the weights of the logistic regression w in order to
predict the class label of the time series.

All these steps are pictured in Figure 3.6, where:
• The red and blue bullets respectively correspond to the distance be-

tween the first shapelet s1 and (⌧ 1
i & ⌧ 2

i).

• The grey bullet corresponds to the minimal distance between the first
shapelet s1 and the i-th time series xi,

• In order to get the predictions, wM + w0 is computed as in the LTS
algorithm.

In the literature, there is – to our knowledge – only Cui et al. [2016];
Lods et al. [2017] that also mentions that LTS can be viewed as a special
case of a CNN.

Learning Time Series Shapelets [Grabocka et al., 2014]

R. Tavenard - Weakly supervised ML for Time Series

3.2. Link between CNNs and LTS 67

Time Series

"

Convolution

Feature Maps

• •

"

Min
Pooling

•

"

Fully
Connected

Predictions

Figure 3.6 – Learning Time Series Shapelets as a CNN, with three shapelets
(filters) and five classes.

1. First, compute the distance between ⌧ j
i and sk for each time series

and each shapelet (i = 1, 2, . . . , N and k = 1, 2, . . . ,K) with j 2

{1, 2, . . . , n�L+1} such that we compute the distance between all the
possible subseries with each shapelet. Shapelets from LTS are equiv-
alent to filters of a CNN convolution step, computing the distance
between shapelets and each subsequence of a time series thus cor-
responds exactly to a convolution layer of a CNN. For LTS, the convo-
lution exploits the temporal relationship between neighboring points,
which is equivalent to a convolution applied on an image which ex-
ploits the spatial relationship between neighboring pixels. Indeed, the
different subsequence correspond to smaller series extracted at regular
step i.e. using a sliding window technique.

2. Then, we select the minimal distances between xi and sk for i 2

{1, 2, . . . , N} and k 2 {1, 2, . . . ,K}. This step corresponds to a min-
pooling layer.

3. Finally, we use the weights of the logistic regression w in order to
predict the class label of the time series.

All these steps are pictured in Figure 3.6, where:
• The red and blue bullets respectively correspond to the distance be-

tween the first shapelet s1 and (⌧ 1
i & ⌧ 2

i).

• The grey bullet corresponds to the minimal distance between the first
shapelet s1 and the i-th time series xi,

• In order to get the predictions, wM + w0 is computed as in the LTS
algorithm.

In the literature, there is – to our knowledge – only Cui et al. [2016];
Lods et al. [2017] that also mentions that LTS can be viewed as a special
case of a CNN.

3.2. Link between CNNs and LTS 67

Time Series

"

Convolution

Feature Maps

• •

"

Min
Pooling

•

"

Fully
Connected

Predictions

Figure 3.6 – Learning Time Series Shapelets as a CNN, with three shapelets
(filters) and five classes.

1. First, compute the distance between ⌧ j
i and sk for each time series

and each shapelet (i = 1, 2, . . . , N and k = 1, 2, . . . ,K) with j 2

{1, 2, . . . , n�L+1} such that we compute the distance between all the
possible subseries with each shapelet. Shapelets from LTS are equiv-
alent to filters of a CNN convolution step, computing the distance
between shapelets and each subsequence of a time series thus cor-
responds exactly to a convolution layer of a CNN. For LTS, the convo-
lution exploits the temporal relationship between neighboring points,
which is equivalent to a convolution applied on an image which ex-
ploits the spatial relationship between neighboring pixels. Indeed, the
different subsequence correspond to smaller series extracted at regular
step i.e. using a sliding window technique.

2. Then, we select the minimal distances between xi and sk for i 2

{1, 2, . . . , N} and k 2 {1, 2, . . . ,K}. This step corresponds to a min-
pooling layer.

3. Finally, we use the weights of the logistic regression w in order to
predict the class label of the time series.

All these steps are pictured in Figure 3.6, where:
• The red and blue bullets respectively correspond to the distance be-

tween the first shapelet s1 and (⌧ 1
i & ⌧ 2

i).

• The grey bullet corresponds to the minimal distance between the first
shapelet s1 and the i-th time series xi,

• In order to get the predictions, wM + w0 is computed as in the LTS
algorithm.

In the literature, there is – to our knowledge – only Cui et al. [2016];
Lods et al. [2017] that also mentions that LTS can be viewed as a special
case of a CNN.

m✓(T1)

m✓(T2)

3.2. Link between CNNs and LTS 67

Time Series

"

Convolution

Feature Maps

• •

"

Min
Pooling

•

"

Fully
Connected

Predictions

Figure 3.6 – Learning Time Series Shapelets as a CNN, with three shapelets
(filters) and five classes.

1. First, compute the distance between ⌧
j
i and sk for each time series

and each shapelet (i = 1, 2, . . . , N and k = 1, 2, . . . ,K) with j 2

{1, 2, . . . , n�L+1} such that we compute the distance between all the
possible subseries with each shapelet. Shapelets from LTS are equiv-
alent to filters of a CNN convolution step, computing the distance
between shapelets and each subsequence of a time series thus cor-
responds exactly to a convolution layer of a CNN. For LTS, the convo-
lution exploits the temporal relationship between neighboring points,
which is equivalent to a convolution applied on an image which ex-
ploits the spatial relationship between neighboring pixels. Indeed, the
different subsequence correspond to smaller series extracted at regular
step i.e. using a sliding window technique.

2. Then, we select the minimal distances between xi and sk for i 2

{1, 2, . . . , N} and k 2 {1, 2, . . . ,K}. This step corresponds to a min-
pooling layer.

3. Finally, we use the weights of the logistic regression w in order to
predict the class label of the time series.

All these steps are pictured in Figure 3.6, where:
• The red and blue bullets respectively correspond to the distance be-

tween the first shapelet s1 and (⌧ 1
i & ⌧ 2

i).

• The grey bullet corresponds to the minimal distance between the first
shapelet s1 and the i-th time series xi,

• In order to get the predictions, wM + w0 is computed as in the LTS
algorithm.

In the literature, there is – to our knowledge – only Cui et al. [2016];
Lods et al. [2017] that also mentions that LTS can be viewed as a special
case of a CNN.

Learning DTW-Preserving Shapelets (LDPS) 
Schematic view of our model

�16

Learning DTW-Preserving Shapelets (LDPS)

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Problem formulation

• Loss function

• Optimize jointly on the mapping and the scaling
factor

• Self-supervised learning
• No need for human annotation

�17

L({Ti}) /
X

i1

X

i2

(DTW (Ti1 , Ti2)� �km✓(Ti1)�m✓(Ti2)k2)
2

m✓

�

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Experiment #1: Quality of fit

�18

0 1 2 3 4 5 6 7 8
Exact DTW

0

1

2

3

4

5

6

7

8

M
od

el
ap

pr
ox

im
at

io
n

of
D

TW Fully fitted model (r = 0.94)
Model fitted after 1,000 iter. (r = 0.75)

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Experiment #2: Clustering using k-means

�19

Learning DTW-Preserving Shapelets 11

that it learns a transformation for time series that can later be applied to new
data, which SPIRAL cannot do, hence strongly limiting its application scope.

Datasets LDPS-E LDPS-C SPIRAL U-Shape k-Shape
CBF 0.83 0.71 0.39 0.61 0.76

CricketX 0.34 0.35 0.30 0.37 0.38

ElectricDevices 0.34 0.35 0.35 0.31 0.25

FaceAll 0.63 0.60 0.63 0.53 0.60

FaceFour 0.63 0.63 0.60 1.00 0.48

FiftyWords 0.68 0.64 0.68 0.56 0.66

Lightning2 0.13 0.12 0.08 0.05 0.11

Lightning7 0.53 0.55 0.48 0.50 0.54

OSULeaf 0.42 0.34 0.26 0.33 0.42

StarLightCurves 0.68 0.68 0.61 0.51 0.60

SwedishLeaf 0.70 0.63 0.64 0.59 0.56

SyntheticControl 0.97 0.98 0.81 0.83 0.72

Trace 0.75 0.75 0.50 0.73 0.75

TwoPatterns 0.69 0.86 0.11 0.32 0.30

UWaveGestureLibraryX 0.44 0.43 0.47 0.31 0.45

Average rank 2.13 2.33 3.40 3.87 3.20

Table 1: Comparison of Normalized Mutual Information (NMI) scores. Best per-
formance is marked as bold. When the di↵erence cannot be considered significant
using a Mann-Whitney rank test with p = 5%, several models are bolded.

5 Conclusion

In this paper, we present LDPS, an algorithm that aims at embedding time series
into an Euclidean space, in which distances approximate the Dynamic Time
Warping measure between raw time series. The embedding we design is based on
the Shapelet Transform, that maps time series into high-dimensional vectors. The
originality of our approach is that we learn shapelets using a stochastic gradient
descent so that they best preserve the DTW between time series pairs. We
show that the original DTW can be accurately captured by Euclidean distances
in the transformed space. Clustering performance using this novel time series
representation outperforms competitive methods designed specifically for this
task. An interesting property of LDPS is that it leads to an ubiquitous time
series representation that can feed a wide range of machine learning or indexing
methods. As a future work, we will in particular aim at designing time series
indexing schemes based on LDPS. As time series are embedded in a metric
space, we can benefit from e�cient indexing systems designed specifically in
such spaces.

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Experiment #3: Retrieval [Sperandio et al., 2018]

�20

• kNN search in a database
• DTW as a target metric (but too costly)

R. Tavenard - Weakly supervised ML for Time Series

Learning DTW-Preserving Shapelets (LDPS) 
Take-Away slide

• Learning DTW-Preserving Shapelets (Arnaud Lods)
• embeds time series in a metric space

• useful for many data analysis tasks
• uses only self-supervision

• Perspectives
• can be extended to any similarity measure  

(pick the best for your data!)
• LDPS + semi-supervised learning: 

Learn a mix between DTW and a good classifier  
(mixed loss function)

�21

Part III 
Beyond time series: structured data in general

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
Example [1/2]: GPT-2 Language Model

�23

Twitter status, @openai, Feb 14th, 2019

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
Example [2/2]: Early classification of time series

�24

M. Rußwurm et al.  
End-to-end Learning for  

Early Classification of Time Series

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
DTW & Optimal Transport (OT)

�25

Wasserstein distanceDynamic Time Warping
Reference discharge time series RQ

O
b
s
e
r
v
e
d
d
is
c
h
a
r
g
e
t
im

e
s
e
r
ie
s
S
Q
,n

DTW problem = OT problem + strong structural constraints

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
Optimal Transport & Structure

�26

Gromov-Wasserstein distance

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
Optimal Transport & Structure — cont’d

�27

Wasserstein distance

Gromov-Wasserstein distance

Fused-Gromov-Wasserstein (FGW) distance

min
⇡

X

i,j

dij⇡i,j

<latexit sha1_base64="fCYHiZ6SeWBx4WTsBL0uWBzq5JA=">AAADFHicjVHNa9RAHH2NX239WvXYS3ARPJQlsQ12b0UvvdlCty1sliXJTtdp88VkIpSQf8P/xJs38dqriFcF+1/0zTSF1iI6IZk37/fey/xm4jKVlfa87wvOrdt37t5bXFq+/+Dho8e9J0/3qqJWiRglRVqogziqRCpzMdJSp+KgVCLK4lTsx8dvTX3/g1CVLPJdfVKKSRbNc3kok0iTmvbehZnMp01YytYNqzqbNnL1qHVnnJvQxo/VPJ403sALhoHvrXqDwPOHawYMhxvrQdAetbSW8sI57fUptcO9CfwO9NGN7aL3DSFmKJCgRgaBHJo4RYSKzxg+PJTkJmjIKSJp6wItlumtqRJURGSP+Z1zNe7YnGuTWVl3wr+kfBWdLl7QU1CniM3fXFuvbbJh/5bd2EyztxPOcZeVkdV4T/Zfvkvl//pMLxqH2LA9SPZUWsZ0l3QptT0Vs3P3SleaCSU5g2esK+LEOi/P2bWeyvZuzjay9d9WaVizTjptjTOzS16w/+d13gR7rwb+2sDfWe9vvumuehEreI6XvM/X2MQWtjFi9if8wE/8cj46n50vztcLqbPQeZ7h2nBOzwHk2Kxv</latexit>

min
⇡

X

i,j,k,l

Lijkl⇡i,j⇡k,l

<latexit sha1_base64="p1n5QY0HbKkr85LtmD5Z0dmFm8w=">AAADbXicjVFNb9NAEB3HfJQCbQBxAiGLCMHBinYdO4kPoAouHDgUibSV4iiy3W3Yev2htY1UWft/+EeIfwAn/gKziytBKgRr2X775r3ZmZ2kErxuCPlqDexr12/c3Lm1e/vO3b394b37R3XZypQt0lKU8iSJayZ4wRYNbwQ7qSSL80Sw4yR7o+PHn5iseVl8aC4qtsrjTcHPeBo3SK2Hn6OcF+suqrhyorrN1x13z93MFcp5h7iLzBFLuUlWHRmTIAwocck4IDScaBCGcz8I1LnaUobzqedPUUDIjHpUA2/mT3yVbSunNMTofDrDrzehSiispOKmEGVA5jpCrYcjnUwv5yqgPRhBvw7L4ReI4BRKSKGFHBgU0CAWEEONzxIoEKiQW0GHnETETZyBgl30tqhiqIiRzfC7wd2yZwvc65y1cad4isBXotOBZ+gpUScR69McE29NZs3+LXdncuraLvCf9LlyZBv4iOy/fJfK//XpXho4g7npgWNPlWF0d2mfpTW3oit3fuuqwQwVchqfYlwiTo3z8p4d46lN7/puYxP/ZpSa1fu017bwXVeJA6bb47wKjrwxnYzpe3908Lof9Q48gqfwAuc5gwN4C4ewgNTas3zrpfVq8MN+aD+2n/ySDqze8wD+WPbznyVpwqs=</latexit>

min
⇡

X

i,j,k,l

[(1� ↵) dij + ↵Lijkl]⇡i,j⇡k,l

<latexit sha1_base64="POw9YR2+Iv2BOp/bziLv6HTZxaI=">AAADxniclVHLbtNAFL2ueZTyaApLNiMipCJM5HHsJN5VsOmCRZFIWymOItuZJFOPH7LHoMqyxA+whU9D/AH8BXcGV4JUCBjL9plzz7lz79yoELyStv3V2DFv3Lx1e/fO3t179x/s9w4enlZ5XcZsGuciL8+jsGKCZ2wquRTsvChZmEaCnUXJKxU/e8fKiufZW3lZsHkarjO+4nEokVocGBCkPFs0QcFbElR1umi4dWEllsCtYCs5I4eUvCBBKIpN+IwEFlmipAn00bNyHc0be2B7vkdtyx54NvWHCvj+xPW89qJtyfPOTF7/l3FL6U9GjjtCgW2PqUMVcMbu0G2TbeWI+hidjMb4dYa0FVhDUPL1Rs4JtqkbbDVILCLaRa+vkqpFrgPagT506yTvfYEAlpBDDDWkwCADiVhACBU+M6BgQ4HcHBrkSkRcxxm0sIfeGlUMFSGyCX7XuJt1bIZ7lbPS7hhPEfiW6CTwFD056krE6jSi47XOrNg/5W50TlXbJf6jLleKrIQNsn/zXSn/1ad6kbCCie6BY0+FZlR3cZel1reiKie/dCUxQ4GcwkuMl4hj7by6Z6I9le5d3W2o49+0UrFqH3faGr6rKnHAdHuc18GpM6DDAX3j9o9edqPehcfwBA5xnmM4gmM4gSnExtr4aHwyPpvHZmbW5vuf0h2j8zyC35b54QezCN6y</latexit>

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
FGW & time series barycenters

�28

�2

0

Euclidean barycenter (N = 275)

�2

0

DBA barycenter (N = 20)

0 50 100 150 200 250

�2

0

Soft-DTW barycenter (� = 1, N = 20)

0 50 100 150 200 250

�2

0

FGW barycenter (↵ = 10�6, N = 20)

R. Tavenard - Weakly supervised ML for Time Series

Beyond Time Series: Structured data in general  
Take-Away slide

• Fused Gromov-Wasserstein (Titouan Vayer)
• is a proper distance metric
• is differentiable
• can be used for

• clustering of structured data with explicit barycenters
• structured data classification
• …

• Structured data
• is awesome for weakly supervised approaches (cf. GPT-2)

�29

Part IV 
If I had more time…

R. Tavenard - Weakly supervised ML for Time Series

Learning Interpretable Shapelets through Adversarial Regularization  
[Yichang Wang — Work In Progress]

�31

Feature
Maps

Input

Convolution
Kernels =
Shapelets

Feature
Maps

MaxPooling and
Concatenate

Discriminator

Classifier

S2

S3

S1

Time
Series MaxPooling and

Concatenate

C
on
vo
lu
tio
ns

Feature
Maps

Input

Convolution
Kernels =
Shapelets

Feature
Maps

MaxPooling and
Concatenate

Discriminator

Classifier

S2

S3

S1

Time
Series MaxPooling and

Concatenate

C
on
vo
lu
tio
ns

Feature
Maps

Input

Convolution
Kernels =
Shapelets

Feature
Maps

MaxPooling and
Concatenate

Discriminator

Classifier

S2

S3

S1

Time
Series MaxPooling and

Concatenate

C
on
vo
lu
tio
ns

Feature
Maps

Input

Convolution
Kernels =
Shapelets

Feature
Maps

MaxPooling and
Concatenate

Discriminator

Classifier

S2

S3

S1

Time
Series MaxPooling and

Concatenate

C
on
vo
lu
tio
ns

R. Tavenard - Weakly supervised ML for Time Series

Learning Interpretable Shapelets through Adversarial Regularization  
[Yichang Wang — Work In Progress]

�32

R. Tavenard - Weakly supervised ML for Time Series

Interpretable Shapelets 
[Yichang Wang — Work In Progress]

�33

R. Tavenard - Weakly supervised ML for Time Series

Conclusion & Perspectives

• tslearn needs you ;-)
• Or, at least, OSS needs you

• Representation learning
• Learn to mimic a target metric
• Learn a representation from structural information

(generative models)
• Interpretable models for Time Series

• Useful for unsupervised settings

�34

R. Tavenard - Weakly supervised ML for Time Series

References

• R. Tavenard.  
tslearn: A machine learning toolkit dedicated to time-series data.  
https://github.com/rtavenar/tslearn

• A. Lods et al. Learning DTW-Preserving Shapelets. IDA 2017.

• M. Rußwurm et al. End-to-end Learning for Early Classification
of Time Series. ArXiv 2019.

• T. Vayer et al. Optimal Transport for structured data with
application on graphs. ArXiv 2019.

�35

https://github.com/rtavenar/tslearn

