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 Part I – Dispersion and 

nonlinearity for water waves: 

 an introduction  

Nonlinear and dispersive waves on a flat bottom: 

L = 64 m 

H = 6.4 m   H/L = 10%   (ka = p/10 = 0.31) 

depth h = 64 m h/L = 1         (kh = 2p) 

No ambient current 
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Dispersion refers to the form of the wave speed. 

In the general case, the celerity C of a regular wave of wave-length L propagating in a 

domain of constant water depth h is a function of the wave period T and of the wave 

height H. 

This is called the dispersion relation: 

If this speed C is a function of the water depth h solely (irrespective of the period T  

and height H), waves are non-dispersive. They all propagate at the same speed, 

given by                . This is also called the “long wave” regime. 

The shallow water equations (SWE) system is the prototype of non-dispersive models, 

for long waves with wave lengths much larger than the water depth. The criterion 

usually used to apply the long wave approx. is: L > 20 h  or  h/L < 1/20  or kh < p/10. 

The effect of the period T (or frequency f = 1/T) on the celerity is referred to as 

frequency dispersion. 

The effect of the wave height H (or amplitude a = H/2) on the celerity is referred to as 

amplitude dispersion. 

What is dispersion and how does it manifest? 

ghC 

),,( HThf
T

L
C 



5 

A way to consider (frequency) dispersion is related to the way the (surface) waves feel 

the proximity of the sea bottom.  

Frequency dispersion is usually characterized by a non-dimensional ratio: 

                              water depth / wave length 

                  (is the wave long compared to the water depth?) 

Parameters ususally used to evaluate (frequency) dispersion: 

- the relative water depth:    h/L    or alternatively   m = kh = 2ph/L    (kh)2 

- the non-dimensional period:                   or alternatively                            (w = 2p/T)   

 

How to quantify the (frequency) dispersion? 
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Consider the Airy (or Stokes first order) linear wave model, the prototype of linear 

(0 nonlinearity) and fully dispersive model for regular waves of period T. 

Frequency dispersion in the linear wave theory 
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                              combined => 

Dynamic FSBC  

With periodic lateral BCs, this BVP Laplace problem on  has an analytical (exact) 

solution for progresive waves: 
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The dispersion relation of linear wave theory 

A fundamental relation for water waves: 

 

Alternative expressions: 

 

- phase celerity: 

 

 

- wave length: 

 

 

Remarks: 

1. The speed C is function of water depth h and wave length L (or period T) 

=> frequency dispersion is present ! 

2. The wave height H does not play any role: no amplitude dispersion. 

(which is fully coherent with the basic assumption of linear waves in this model). 

3. Expressions with non-dimensional numbers: 
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The dispersion relation – asymptotic cases 

In                                ,  m = kh  plays a dominant role through the tanh function. 

 

If kh is large, tanh(kh) ≈ 1. The dispersion relation reduces to: w2 = gk0,  C0 = g/w = gT/2p 

 The celerity is a function of the wave period (or wave length) only. No effect of water 

depth h (which is coherent with the assumption that is depth is formally infinite). 

 The waves are dispersive: the longer waves travel faster. 

 “kh large” = L small (short waves) and/or h large (deep water). 

This corresponds to the deep water or short wave regime. 

 Criterion for using this approximation:    h/L > 1/2   ↔   h > L/2  ↔   m = kh > p 

 

or in terms of nondimensional period: 

 

If kh is small, tanh(kh) ≈ kh. The dispersion relation reduces to: w2 = ghk2,   

 “kh small” = L large (long waves) and/or h small (shallow water). 

This corresponds to the shallow water or long wave regime. 

 The celerity is a function of the water depth h only. No effect of wave period (or wave 

length): the waves are non-dispersive; they all propagate at the same speed. 

 Criterion for using this approximation:    h/L < 1/20   ↔   h < L/20  ↔   m = kh < p/10 

 

or in terms of nondimensional period: 
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Practical resolution of the dispersion relation (1) 

This relation is explicit for computing w or T as a function of h and L (or k). 

(images of the sea surtfaces through radars 

or photos at a given time => measure of L) 

 

 

But it is implicit for computing L (or k) as a function of h and T (or w). 

(times series of free surface elevation at a given location 

through buoy, pressure sensor, etc. => measure of T) 

 

 

In this latter case, several options: 

a. Use of asymptotic solutions if kh is large (> p) or small (< p/10), as seen previously, 

b. Perform numerical (iterative) resolution, 

c. Use of explicit approximations. Numerous expressions available in the literature. 

d. Existing diagrams or tables with pre-calculated values of wave-length 

as a function of water depth and period (in general less accurate). 

 

)tanh(2 khgkw



Numerical resolution with iterative scheme (fixed point iterations): 

 

  

 

  with initial guess:                             if case closer to deep water, 

                                                          if case closer to shallow water, 

  and a stopping criterion, e.g.  
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(Newton method can also be used, and other methods as well) 
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Practical resolution of the dispersion relation (2) 
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Explicit approximations: 

 

Hunt (1979) 

(order 9) 

 

 

 

 

   (very accurate – relative error < 0.1%) 

 

Hunt (1979) 

(order 5) 

 

  

Fenton & 

Mc Kee (1990) 

                               (relative error < 1.5%) 

 

Many other approximations (more or less complex and accurate). 
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      a1 = 0,6522      a2 = 0,4622      a3 = 0 

      a4 = 0,0864      a5 = 0,0675 

Practical resolution of the dispersion relation (3) 
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Existing diagrams or tables with pre-calculated values 
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Nonlinearity refers to the effect of the wave amplitude (or height). 

Nonlinear effects are present if the free surface deformation are finite (not infinitely 

small), and if the amplitude of the deformation plays a role in the evolution of the wave. 

Conversely, in the linear framework, the amplitude of the wave is assumed to be 

infinitely small and do not play any role. 

Nonlinearity is usually characterized by a non-dimensional ratio: 

       wave height / wave length    or     wave height / water depth 
                 (is the wave high compared to its lenth or the water depth?) 

Parameters ususally used to evaluate nonlinearity: 

- the steepness:    H/L    or alternatively    = ka = pH/L 

  One often use the deep water wave length (L0 = gT2/(2p)) for the steepness: H/L0 

  This ratio is mostly used in deep water and intermediate water depth. 

- the relative wave height:   H/h    or alternatively a/h. 

   This ratio is mostly used in shallow water.       

The larger these numbers, the stronger the nonlinear effects. 

What is non-linearity and how does it manifest? 



Another nondimensional number: the Ursell number  

Ursell number: ratio nonlinearity / dispersion 

 

 

with some variations, e.g. with L = CT  and assuming, in shallow water 

 

 

 

or with a = H/2 : 

 

 

 

- Useful to quantify the level of non-linearities in the waves. 

- Used for choosing an analytical nonlinear wave theory for regular waves on flat bottom. 

Threshold value usually considered: Us = 26 

                 Us < 26   => Stokes-type theories ;   Us > 26 => cnoidal theories 

BUT it is advised to use a numerical method, like the stream function Fourier series 

method, valid whatever the relative water depth and the wave steepness. 
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When H/L or H/h exceed some thresholds the stability limit is reached 

and breaking occurs. 

 

Example of periodic waves : 

Le Mehaute diagram 

Nonlinearity for regular (periodic) waves 

Nonlinearity parameter 
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Dispersion parameter 

(relative water depth ) 

0

2 2

1

L

H

gT

H

p


0

2 2

1

L

h

gT

h

p




Effect of wave height of the celerity (amplitude dispersion): 

 

Example for a regular wave, with fixed characteristics: 

Depth          h = 100 m 

Period         T = 10 s 

 

=> Effect of dispersion? 

      T(h/g)0.5 = 3.13 < 4       h/(gT2) ≈ 0.1  => deep water approx. is OK 

       

=> wave length?        L0 = gT2/(2p) =  156.13 m        (L0/2 = 78.06 m) 

(from linear dispersion relation; asymptotic deep water case) 

 

We let the wave height H increase: H = 1 m, 8 m, 17 m, 

and so do the steepness H/L  and the Ursell number 

 

Compare the results from various wave theories: 

Stokes 1 (=linear), Stokes 3, Stokes 5 and the stream function solution at 

order 18 (STREAM_HT code) 

 

3

2

h

HL
U s 

Nonlinearity for regular (periodic) waves 



17 

Nonlinearity for regular (periodic) waves 

Nonlinearity parameter 

(steepness) 

Dispersion parameter 

(relative water depth ) 
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H/L = 0.006 
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 Part II – An assessment of 

dispersive effects for tsunami 

wave propagation 

A photo of the 2004 tsunami showing the « undular bore » shape of the 

tsunami approaching the coastline, with clear indication of the significance 

of dispersive and nonlinear effects. 



Assumptions: 

- Flat bottom (h constant). Set C0 =(gh)1/2  

- Linear weakly dispersive waves => linear KdV model 

- Initial deformation of the free surface given and symmetric w.r.t the y axis, through F(x/l) 

- Consider waves propagating to the right only 

See Whitham (1974), Mei et al. (2005), Madsen et al. (2008), Glimsdal et al. (2013) 

 

Dispersion relation of the linear KdV eq:  

 

 

 

Analytical solution can be formulated using the Airy function (Ai): 

 

                                                                with adim. variables 
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A (very) simplified frame for the analysis 
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La fonction d'Airy Ai(z) (et la fonction Bi(z) = fonction d'Airy de seconde espèce) sont 

des solutions de l'équation différentielle linéaire d'ordre 2 (équation d’Airy) : 

                            dans le cas complexe (                       dans le cas réel) 

 
Solution dans le cas où x est réel : 

(intégrale convergente) 

 

Qq propriétés : 

•Pour x > 0, Ai(x) est positive, concave, 

et décroît exponentiellement vers 0. 

•Pour x < 0, Ai(x) oscille autour 0 avec 

une fréquence de plus en plus forte 

et une amplitude de plus en plus faible 

à mesure que x → −∞) 

•possède un point d'inflexion en x = 0 

•Approximation quand x → +/−∞, 

voir sur graphe ci contre. 

Eléments sur la fonction d’Airy Ai(x) (source wikipedia) 

0'' zyy 0'' xyy

Quand x → −∞  Quand x → +∞  
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Glimsdal et al. (2013) use the (nondimensional) dispersion time t, as a measure of 

dispersive effects 

 

 

 

where  

h is the water depth, 

c0 =(gh)1/2  the long-wave celerity,  

l  is a characteristic dimension of the initial wave length (of free surface initial deformation),  

T = l/c0  the overall period, 

L = c0 t  the propagation distance in a time t, 

 

 

The larger the dispersion time t, the more significant are dispersive effects during the 

propagation. 

• Dispersion accumulates in time, and thus increases with t and L. 

• The variation is stronger with respect to h. 

• The sensitivity is strongest with respect to the extension of the source l  

Interpretation of the dispersion time 

3
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Glimsdal et al. (2013) have estimated dispersion times for several events, 

at a distance of L = 100 km from the source: 
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Typical dispersion times 

3

26

l
t

Lh

Based on comparison with numerical simulations, they indicate that dispersive effects: 

• are small (negligible) if t < 0.01, 

• become significant for t  > 0.1 

 



The form of t indicates that the source width (or initial wavelength for landslides) l is more 

important for the significance of dispersion than the depth or propagation distance L.  

 

=> moderate-magnitude earthquakes yield more dispersive tsunamis than the huge ones, 

such as the 2004 Indian Ocean and the 2011 Japan tsunami. 

 

Seismic tsunamis (due to earthquakes): 

For the largest ones: frequency dispersion only modify the transoceanic propagation mildly. 

Hence, dispersion is not needed for propagation in the near-field, but may be important if 

far-field tsunami data are used for verification of source properties. 

For the smaller ones (Mw < 8 or less): a strong directivity of the dispersion, following the 

amplitude directivity, due to the elongated shapes of the source regions. In the offshore 

direction normal to the fault line, the tsunami signal must be expected to become completely 

transformed before reaching buoys or other continents. 

Landslide tsunamis: 

Most of them are strongly affected by dispersive effects. For the leading part of the signal, 

such effects are generally most important during wave generation and the early stages of 

propagation. Extremely large landslides (moving at small Froude numbers), such as the 

Storegga Slide, are the likely exception. The oceanic propagation of such events is virtually 

non-dispersive. 
26 

A summary of Glimsdal et al. (2013) study 
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Part III – Brief overview of 

numerical models for water waves 

and tsunamis 

The shoaling of a solitary wave on a plane slope (1:35) simulated with two 

versions of Boussinesq models, up to the breaking point. 



Non-dispersive nonlinear shallow water model  

Saint-Venant equations (nonlinear shallow water equations) are expressed using the 

depth averaged horizontal velocity: 

 

 

rely on the following assumptions: 

 hydrostatic distribution of pressure,  

 constant velocity over the water column.  

 

 

 

 

 

Dispersive effects are neglected => suitable for long waves (tides, strorm surges) 

Hyperbolic system (develop shocks from initial disturbances of the free surface). 
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On Boussinesq equations (a large family…) 

Boussinesq equations from Peregrine (1967) for variable bottom profile: 

 

 

 

 

 

 

 

Expression for the 1DH case (along x only with velocity U in x) : 

 

 

 

A number of higher order extensions have been introduced 

(e.g. Nwogu, Madsen et al., Kirby et al., etc.) 

=> a lot of variations of these equations, with more involved and complex expressions 

as higher order terms are added. 
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Unknowns:  free surface  and horizontal speed ua at elevation za=Ca.h 

Nwogu (1993)  equations in nondimensional variables     m = kh  and  = a/h 

• Mass conservation:   

  

• Momentum conservation: 

 

Flat bottom case (in dimensional form): 

 

                                                                          with  

 

 

 

 

Linear version of the model leads to the dispersion relation 

 

NB: Equations of Wei et al. (1995) or Serre-Green-Naghdi (SGN) include all terms of 

order O(m2, m2) => « fully nonlinear » equations (…at this m2 dispersive order however !)
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Taylor expansions at low values of m = kh: 

 

 

 

 

Padé(0,2N) rational aproximations 

 

 

 

 

 

Padé(2N,2N) rational aproximations:  
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Madsen et al (1991) 

Madsen et al (1998) 

KdV model 

Approximations of the dispersion relation of 

linear waves on a flat bottom 
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Padé(2,2) Padé(2,2) 

Nwogu (1993) 

Nwogu (1993) 
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A fully nonlinear and dispersive model -  Assumptions 

Main assumptions of the mathematical model: 

{H1} homogeneous fluid of constant density r  (incompressible flow) 

{H2} irrotational flow => wave potential   f(x,z,t) :                                with  x = (x,y) 

{H3} inviscid fluid, and no dissipative processes are included (e.g. depth-induced breaking, 

bottom friction), but some viscous effects can be included (see later). 

{H4} non-overturning waves => continuous water column between bottom and free surface, 

free surface elevation  is a single-valued function of x. 

Remarks: 

 surface tension effects can be included (=> gravity-capillary waves) 

 atmospheric pressure at the free surface can vary in x and t, 
but will be taken here as  homogeneous and constant (Patm = 0  by convention) 

 bottom elevation z = -h(x,t) can vary in x and t (=> tsunami waves) 

No assumptions made in the derivation of the model for: 

 dispersive effects: arbitrarily high values of m = kh (deep to shallow water) 

 nonlinear effects: arbitrarily high values of  = H/h (or H/L) (up to limit of stability)  

 bottom slope effects: arbitrarily high values of m = |h| (up to near-vertical slopes) 

 

f),,( tzxu
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Mathematical model – Basic equations 

KFSBC 
Boundary conditions at the 

free surface z = (x,t)  

Boundary condition at the bottom  

Non-hydrostatic pressure from Bernoulli eq.: 
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Mathematical model – Zakharov equations and DtN problem (1)  

Introduce the free surface potential 

(NB: a function of x and t only) 

The 2 free-surface BC are written as the so-called Zakharov equations for            and 

 

 

 

                           

                                             is the vertical velocity at the free surface. 

NB: all variables in this system are functions of x and t only in the general 3D case. 

Zakharov (1968) has shown that this system is Hamiltonian, 

with Hamiltonian = total energy                H = K + U 
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Mathematical model – Zakharov equations and DtN problem (2)  

 

To integrate in time the Zakharov system 

 

 

 at each (sub) time step, a Dirichlet-to-Neumann (DtN) problem needs to be solved: 

        given  (x,t)  and             ,   evaluate                                         (DtN problem) 

Existing approaches: 

High Order Spectral (HOS) method  (West et al., 1987 ; Dommermuth & Yue, 1987) 

  rectangular domains with constant depth and periodic (or fully reflective) lateral BCs,  

  extensions to irregular bottom (Smith, 1998 ; Craig et al., 2005, Guyenne & Nicholls, 2007). 

Boussinesq-type models : 

  approximate models from the Zakharov eq. (e.g. Madsen et al., 2002, 2003, 2006)  

  double-layer model of Chazel et al. (2009, 2010) 

See also (among others)       Kennedy & Fenton (2001)  [Local Polynomial Approx.] 

                                           Clamond & Grue (2001), Fructus et al. (2005), 

                                               Bingham & Zhang (2007), Engsig-Karup et al. (2009). 
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Time marching: explicit 4th order Runge-Kutta (RK4) scheme, with constant t. 

Alternative schemes will be tested, in particular symplectic schemes (Xu & Guyenne, 2009) 

DtN problem: at each time step, solve the 

Laplace BVP numerically to compute fx,z,t 

in the whole domain, and then compute 

            at the free surface. 

 method for solving the Laplace BVP: 

- in the vertical: spectral approach, 

- in the horizontal: 

  1DH: high-order finite difference scheme in x direction (Fornberg, 1988). 

  2DH: discretization with RBF (Radial Basis Functions), currently ongoing. 

 Misthyc code (collaboration IRPHE and Saint-Venant Lab.) 
37 

Overview of the selected numerical strategy 

=>  govern temporal evolution of 

free surface variables  and  ~
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Solve Laplace BVP with spectral approach in the vertical (1) 

Following Tian & Sato (2008) and Yates & Benoit (2015): 

 

1/ Map vertical coordinate z on [–h(x,t) ; (x,t)] to s on [-1 ; 1]    rectangular domain 

 

 

                                                    

2/ Reformulate the BVP problem in this transformed space (x, s) for  

 

 

 

3/ Spectral approach in the vertical: series expansion of the potential in the vertical using 

Chebyshev polynomials of the first kind Tn(s)  (n = 0,..., NT): 

                                                                            Maximal order NT 

 => NT + 1 unknowns at each position: an(x)  (n = 0,..., NT) 
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Solve Laplace BVP with spectral approach in the vertical (2) 

Chebyshev polynomials of the first kind Tn(s)  => 

 

                                                                            

With inner product: 

 

 

 

the Tn(s) form an orthogonal basis on [-1 ; 1]: 
 
 
 
 
 

Define the operator: 
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s 

Tn(s) 

T0 
T1 

T2 

T3 
T4 

T5 

T6 



 

4/ Insert this approximation in Laplace equation: 

 

(*) 

 

 

with 

 

 

 

 

 

5/ Use Chebyshev-tau method to remove s-dependence. 

The  operator <…>p  is applied to (*) for p = 0,….., NT - 2   => NT – 1 equations  

 

 

 

 

Terms Cpn and Dpn depend on h(x,t), (x,t) and their 1st and 2nd derivatives in space, 

and the constant coefficients 

 

 

which can be computed analytically (once, at the start of the run). 
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Solve Laplace BVP with spectral approach in the vertical (3) 



 

6/ Boundary conditions provide 2 equations at each position: 

 

Bottom BC at s = -1  

 

 

Dirichlet free-surface BC at s = +1 

 

 

Summary: 

At each node x, there are NT + 1 unknowns (a0, a1,….., aNT) and we have formed NT + 1 

equations 

- Galerkin form of Laplace eq. for p = 0, 1, …, NT – 2 

- impermeability condition at the bottom 

- Dirichlet condition on the potential at the free surface. 

 

 

 

 

 

Then the vertical velocity at free surface is 

 

and the system can be stepped forward in time. 

 

For each node xi (i = 1,…,NPX), system of NT+1 linear equations on coefficients an (n = 0,..,NT) 
  sparse quare matrix of size NPX*(NT+1) 
  direct linear solver MUMPS  (Amestoy et al., 2001, 2006). 
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Solve Laplace BVP with spectral approach in the vertical (4) 
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Dispersion relation of the LINEAR version of the model 

(flat bottom case) 

Analytical expression   
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Regular non-breaking waves over a submerged bar (Dingemans exp.) 

Experiments in wave flume by Beji & Battjes (1993), Luth et al. (1994), Dingemans (1994)  

=> strong nonlinear (up to the top of the bar) and dispersive (after the bar) effects 

Simulation of case A: T  = 2.02 s,  H = 2 cm 

 

                              Wave signal at probe 2 => 

Setup and discretization: 

• linear wave solution at the left boundary. 

• relaxation zones: left  7 m (generation) and right 7 m (absorption). 

• horizontal axis:  x = -6 to 38 m with constant  x = 0.05 m    => 881 nodes. 

• order of Chebyshev polynomials:  NT = 3, 4, 5, 7, 10. 

• time: t = 0 to 25T = 50.5 s  with t = T/100 = 0.0202 s  => 2 500 time steps. 



Dingemans (1994) experiment A (T= 2.02 s  H = 0.02 m) 

 

    

Linear dispersive model Nonlinear Boussinesq model 
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Results for case A 
(T  = 2.02 s,  H = 2 cm) 
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Results for case A 
(T  = 2.02 s,  H = 2 cm) 
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Results for case A 
(T  = 2.02 s,  H = 2 cm) 
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Results for case A 
(T  = 2.02 s,  H = 2 cm) 
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Evolution of amplitudes of the first six harmonics (Fourier analysis) 
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Part IV – On solitary waves  

Experimental reproduction of the Scott Russell solitary wave in a water 

canal at Heriot-Watt Univ. in Scotland (12 July 1995).  

Re-creation of the famous 1834 'first' sighting of a soliton or solitary wave by 

John Scott Russell on the Union Canal near Edinburgh. 
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Definition: a solitary wave is composed of a single hump of water which propagates 

with a permanent stable shape at a constant speed in a medium at rest at infinity. 

The wave’s speed depends on its height   =>  one single parameter, the ratio H/h. 

(the larger the height, the faster the wave) 

 

 

 

 

 

 

 

 

 

If two such waves collide they pass 

through each other and emerge from 

the collision unchanged. 

 

An introduction to solitary waves 
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Historically extensively (and still frequently) used for representing tsunami 

waves (in theoretical studies, numerical and physical models) 

 

…though it is now accepted that it is a poor model of real tsunami waves ! 

 

 

 

BUT... 

 

it remains a good candidate to investigate 

the range of validity of mathematical models 

and the quality of numerical codes. 

 

WHY? 

 

Because solitary waves do exist as a result 

of balance between: 

nonlinear effects (that tend to steepen the wave) 

     and 

dispersive effect (that tend to spread and 

disperse the wave). 

 

Why considering solitary waves? 

Surface profiles of a solitary wave on a 1:19.85 

plane beach from Synolakis’ experiments (1987) 

for  H/h = 0.3; and and comparison with a finite-

volume model from Wei et al. (2006) 
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Important remarks regarding solitary waves: 

 

1. Only models that include (some) dispersion and (some) nonlinear effects 

admit solitary wave solutions. 

In particular, the NSWE model (Saint-Venant equations) does not admit a 

solitary wave solution. As no dispersive effects are present, any initial hump of 

water will steepen and evolve towards a discontinuity in a finite time. 

 

2. Different mathematical models exhibit different solitary wave profiles 

depending upon their dispersive and nonlinear properties. 

There is no “one solitary wave”, although the Boussinesq solitary wave is often 

referred to as “the solitary wave solution”. 

 

3. If a mathematical model admits a solitary wave solution, it is a good option to 

select this solution for a validation case of the numerical model implementing 

this mathematical model 

(but beware of using the proper theoretical solitary wave solution...). 

Why considering solitary waves? 
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Approximate mathematical models (compared to the full Euler equations): 

 Analytical expressions can be obtained for some integrable models such as: 

- the KdV model 

- some Boussinesq-type models (...but not all of them !) 

- the Serre-Green-Naghdi model, 

and in other cases a numerical method should be used to find approximate solutions. 

 Note that those formulas could be used whatever the ratio H/h set on input, ...which 

demonstrates they cannot be physical solutions for high amplitude waves ! 

Full Euler mathematical model: 

No analytical closed expression exist. 

- Approximate solutions: 

• Order 1 and 2 in  = H/h => Laitone (1959) 

• Order 3 in  => Grimshaw (1971) 

• Order 9 in  => Fenton (1972) 

- Accurate numerical techniques/algorithms such as: 

- Tanaka (1986), 

- Clamond & Dutykh (2013); Dutykh & Clamond (2014). 

=> Computations possible (but difficult) up to a maximum value of H/h ≈ 0.83. 

Brief review of solitary waves solutions 
(flat bottom – irrotational case) 



Notations 

h = water depth (m) 

H = height of the solitary wave (m) 

C = celerity of the solitary wave (m/s) 

 

Still water celerity of long waves:                              (≠ C, a function of h only) 

 

 

X = x – Ct – x0   where x0 is the initial position of the wave (m) 

 

Some models (Boussinesq, KdV, etc.) use:    K = pseudo wave-number (1/m) 

 

 

Notations:  

 

 

 

 

 

We have:  
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Characteristic numbers 

Nondimensional numbers: the solitary wave is function of a single parameter 

 

- relative wave height:     = H/h :         (0 to ~0.83 for Euler solitary wave) 

 

- Froude number:                                            (1 to ~1.29421 for Euler solitary wave) 

 

- nondimensional crest velocity :                                 (0 to 1) 

 

 

A solitary wave solution is defined by a relation between H, h and C, 

 

or in non-dimensional form:    F2 = f() 

 

 

Dispersion relation: 

If the pseudo wave-number K is defined, the relative depth is:  k = Kh. 

When K exists, a pseudo dispersion relation can be written: F2 = g(k)    

ghuq cc /

ghCCCF // 0 



Exact (analytic) solution of the KdV equation (right-going waves only): 

 

 

 

Free surface: 

 

 

Celerity:                        or 

 

 

Pseudo wave-number:                             or 

 

 

Dispersion relation:  

 

References: 
Korteweg D.J., De Vries G. (1895) On the change of form of long waves advancing in a rectangular canal and on a new type of long 
stationary wave. Phil. Mag., Vol. 39(5), pp 422-443. 
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Solitary wave of the KdV equation (Korteweg & De Vries, 1895) 



Exact solution of the Boussinesq single-equation (right-going waves only): 

 

 

 

Free surface: 

 

Celerity:                                              or                           or   

 

Note that                                    and so  

 

Pseudo wave-number:                             or 

 

Dispersion relation:  

 

References: 
Boussinesq J.V. (1871)  Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal 
rectangulaire. C. R. Acad. Sci. Paris, Vol. 72, pp 755–759. 

Solitary wave of the Boussinesq single-equation model 
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Free surface: 

Velocity (from the above continuity equation):   

Celerity:                        or                                   or   

 

 

Pseudo wave-number:                                             or 

 

Dispersion relation:  

 

References: 
 

Solitary wave of the Serre-Green-Naghdi (SGN) equations 
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Approximate solutions at order 1 and 2 in  of the full Euler equations: 

 

Order 1: 

(idem KdV) 

 

 

Order 2: 
 
 
 

Pseudo wave-number: 
 
 
Dispersion relation:  
 

References: 

Laitone E. (1959) Water Waves, IV: Shallow Water Waves, University of California, Berkeley, Institute of Engineering Research 
Technical Report 82-11. 

Zhao B.B., Ertekin R.C., Duan W.Y., Hayatdavoodi M. (2014) On the steady solitary-wave solution of the Green–Naghdi equations of 
different levels. Wave Motion, Vol. 51, pp 1382-1395. 
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Solitary wave of Euler eq. at orders 1 & 2 (Laitone, 1959) 
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Approximate solutions at order 3 in  of the full Euler equations  (in Wu et al., 2014) : 
 

Free surface: 

 

Celerity:  

 

or 

 

Pseudo wave-number: 

 

or 

 

Fenton (1972) gives 
  
 

References: 
Grimshaw R.H.J. (1971) The solitary wave in water of variable depth, part 2. J. Fluid Mech., Vol. 46, pp 611–622. 
Wu. N.-J., Tsay T.-K., Chen Y.-Y. (2014) Generation of stable solitary waves by a piston-type wave maker. Wave Motion, Vol. 51, pp 
240-255. 
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Solitary wave of Euler eq. at order 3 (Grimshaw, 1971) 



Approximate solutions at order 9 in  of the full Euler equations : 
 

Free surface: 

 

Celerity:  

 

or 

 

Pseudo wave-number: 

 

or 

 

Coefficients Ci and Ki are given in Table 1 of Fenton (1972) 
  
 References : 
Fenton J. (1972) A ninth-order solution for the solitary wave. J. Fluid Mech., Vol. 52, pp 257–271 
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Solitary wave of Euler eq. at order 9 (Fenton, 1972) 



Solitary wave profiles – some comparisons 

H/h = 0.556 H/h = 0.64 

Comparison of the Boussinesq solitary wave solution (blue) 

 and the full-Euler solution (red) by Clamond & Dutykh (2013) 

algorithm for H/h = 0.64. 
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Full Euler solitary solutions are more narrow 

than Boussinesq or KdV solitary solutions. 

 

Differences more marked as H/h increases. 



Solitary wave celerity 
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TANDEM project - Work-package WP1  
 --------------------  

P01 - Solitary wave of Euler equation – 
long-distance propagation 

 

Goal of this test case: 

• propagate a solitary wave over a flat bottom with minimum distortion or phase 

difference, even over long distances, 

• reference solution available for a primitive model (full Euler equations), 

• evaluate the accuracy and capabilities of numerical codes for propagating such waves 

over long distances. 
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TANDEM test-case P01 - Definition of test-case  

Wave height:    = H/h = 0.3,  0.5  or  0.7 

Spatial domain  x/h  from -25 to 675  (total length = 700h) 

Propagation over long time 

Travelled distance for the case  = 0.5:   d ≈ 608h 

h = 1 m 

500/
~

 hgTT

Solitary wave height solution of the full Euler equations on flat bottom 
(no assumption on nonlinearity nor on dispersion). 

Initial conditions and reference solution: highly accurate numerical method 
and algorithm by Clamond & Dutykh (2013). 

H 
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P01 –H/h = 0.5 – Dicretisations and parameters 

Code Mx = 5 Mx = 10 Mx = 20 Mx = 40 Comments 

SLOWS (G-N) 
(INRIA) 

Mt = 25 Mt = 50 Mt = 100 Mt = 200 
CFL = 0.20 

(Mt = 5 Mx) in all cases 

TUCWave (Nwogu) 
(INRIA) 

Mt = 25 Mt  = 50 Mt = 100 Mt = 200 
CFL = 0.20 

(Mt = 5 Mx) in all cases 

Telemac-3D 
(St-Venant Lab.) 

Mt ≈ 31.6 

5 levels 

Mt ≈ 63.3 

5 levels 

Mt ≈ 126.6 

10 levels 

Mt ≈ 253.1 

20 levels 

CFL ≈ 0.158 

(Mt ≈ 6.3 Mx) in all cases 

MISTHYC 
(IRPHE & St-Venant Lab.) 

Mt = 4 

NT = 7 

Mt = 8 

NT = 7 

Mt = 16 

NT = 7 

Mt = 32 

NT = 7 

CFL = 1.25 

(Mt = 0.8 Mx) in all cases 

CLIONA 
(CEA) 

Mt = 7 Mt = 13 Mt = 27 Mt = 53 
CFL ≈ 0.75 

(Mt ≈ 1.33 Mx) in all cases 

x/h ≡ 1/Mx    Nb of cells along x = 700.Mx 

tMhgtt /1/
~


tx MMxtC //CFL 0 

ghC 0
 Nb of time steps = 500.Mt 

Five codes, based on different mathematical models. 
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P01 – H/h = 0.5 – Free surface at final time 
(All results - zoom in the range x/h = 540 to 620) 

500/
~

 hgTT

Theoretical position of the wave x/h ≈ 608 
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H/h = 0.5 –  Free surface at final time  
-------------- 

Comparison of all codes for each spatial resolution (x ≡ h/Mx) 
 

Zoom in the range x/h = 560 to 620 
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H/h = 0.5 –  Free surface at final time – Mx = h/x = 5 
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H/h = 0.5 –  Free surface at final time – Mx = h/x = 10 
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H/h = 0.5 –  Free surface at final time – Mx = h/x = 20 
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H/h = 0.5 –  Free surface at final time – Mx = h/x = 40 
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H/h = 0.5 – Mean errors (over the duration of the simulation) on 

conservation of volume and energy 

volume energy 
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H/h = 0.5 – Error on wave height at final time 

1% 

0,1% 

10% 

0,01% 
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H/h = 0.5 – Error on wave position at final time 

1% 

0,1% 

10% 

0,01% 
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Provisional conclusions, 
based on current comparisons for the case H/h = 0.5 

Significant differences in accuracy and quality of results from the various codes: 

1. Misthyc - Lowest errors on position and amplitude, whatever the spatial resolution in x 
Errors decay faster than (x)4, e.g error in position decays from 0.14% (Mx = 5) to 2.6 10-8 
(Mx = 40). Uses the largest t (CFL = 1.25) with the RK4 scheme. 

2. CLIONA (replacing earlier results from CALYPSO-Bous) – Significantly improved results 
compared with former CALYPSO-Bous. Few % of errors on the wave height and phase. 

3. SLOWS (G-N) – Results seem relatively insensitive to the horizontal resolution, indicating that 
the code has good convergence properties with respect to the horizontal resolution. The 
height of the solitary wave from SLOWS at final time is about 0.457 (relative error of about 
9%). Errors on the position in the order of 1%: the wave travels slower than the theoretical 
wave. Excellent conservation of energy.  

4. TUCwave (Nwogu) – Amplitude is either underestimated (Mx = 5 & 10) or overestimated 
(Mx = 20 & 40), with a minimum error of about 1% (Mx = 20). In all four cases, the wave travels 
slower than the theoretical solution. 

5. Telemac-3D – Results have improved compared to Dec. 2014, with new tuning of options and 
numerical parameters. But still large errors both in amplitude with attenuation between 46% 
(Mx = 5) and  13% (Mx = 40) and position (significant delay compared to the theoretical 
solution, error always > 1% of the total travelled distance). 

A journal paper is being prepared on this test-case, including H/h = 0.3 and 0.7 cases. 
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Part V – A new test-case: long-

distance propagation, shoaling 

and run-up of a rectangular wave   

From Madsen et al. (2008) 



TANDEM project - Work-package WP1  
 --------------------  

P04 - Long-distance propagation, shoaling 
and run-up of a rectangular wave  

 

Goal: compare the results of many solvers, in particular regarding the run-up/run-

down of the tsunami wave train at boundaries of the domain (min/max elevations 

and associated times). 

 

• Combine 3 phases of a tsunami: 

(i) propagation, (ii) shoaling and (iii) run-up on vertical wall. 

• 2DV case, that can be modelled with 3D codes assuming invariance along the 

transverse direction (use 1 or 2 cells in the transverse direction). 

• Choice of realistic characteristics (water depth, distances, initial deformation) 

• Simple boundary and initial conditions (instantaneous deformation of the free 

surface with analytical shape, without any velocity) => easy to set up and run. 

• Reference results could be obtained from highly accurate Euler solver from 

F. Dias (Matlab code used in Viotti and Dias (2014)) 

• Could be run by all codes, from NLSWE codes to Navier-Stokes solvers 

=> everybody should (in principle) be able to run it.  



Assumptions and general settings: 

• Inviscid fluid of constant and homogeneous density (incompressible flow). 

• Constant and homogeneous atmospheric pressure at the free surface. 

• Surface tension effects neglected. 

• Acceleration of gravity g = 9.81 m/s2 

Bathymetry: 

• Fully defined analytically on a 30 km long domain (see figures) and constant in time 

• Two profiles considered, including or not a 10 km long deep water pit. 

• Impermeable bottom, with a slip condition u.n = 0 

Lateral boundary conditions: 

• Vertical fully reflective (impermeable) walls, with a slip condition u.n = 0 

Initial conditions: 

• Initial free-surface elevation with a (smoothed) rectangular shape, fully defined analytically: 

0 ≤ x < 1 900 m (x) = 5 m 

1 900 ≤ x ≤ 2 100 m (x) = 2.5 (1 − tanh((x/2000 − 1)))      with   = 229.756 

2 100 < x ≤ 30 000 m (x) = 0 

• Fluid at rest in the whole domain at t = 0 (u = 0 everywhere). 

Simulated duration: 1 h = 3600 s   (with t left to participant’s choice). 
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P04 - Test-case definition 



Profile 1 : constant depth (h = 50 m) + slope on the right + horizontal shelf with h1 = 18 m 
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P04 - Test-case definition – Bottom profile 1 

a = 5 m 

h = 50 m 

b = 2 km 

h1 = 18 m 

(25 km, -50 m) 

(29 km, -18 m) 

slope = 1/125 = 0.008 

x (m) 

z (m) 



Deep water pit (h2 = 1000m) in the domain (5 km < x < 20 km), otherwise identical to profile 1. 

82 

P04 - Test-case definition – Bottom profile 2 

h2 = 1000 m 

h1 = 18 m 

(25 km, -50 m) (29 km, -18 m) 

slope = 1/125 = 0.008 

h = 50 m h = 50 m 

(17.5 km, -1000 m) (7.5 km, -1000 m) 

(5 km, -50 m) (20 km, -50 m) 

slope = 950/2500 = 38/100 slope = -950/2500 = -38/100 

z (m) 

x (m) 10 km 
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Participants to this (ongoing) benchmark 

Ongoing test-case => PROVISIONAL RESULTS 

Results up to 21 min (before run-up of the right wall): propagation + shoaling 

 

Nonlinear shallow water codes (Saint-Venant equations): 

(in principle non-dispersive and nonlinear models) 

• Telemac-2D (EDF) 

• Saint-Venant solver of EoleNS (Principia) 

 

Boussinesq and Green-Naghdi codes: 

(in principle weakly dispersive and weakly nonlinear models) 

• Funwave-TVD (BRGM) 

• SLOWS-GN (INRIA Bordeaux) 

• + possibly (not received yet): CALYPSO and/or CLIONA (CEA), Telemac-2D 

Boussinesq (EDF), TUCwaves (INRIA Bordeaux) 

 

Euler potential and Navier-Stokes (without viscosity) codes: 

(in principle fully dispersive and fully nonlinear models) 

• Misthyc (IRPHE & Saint-Venant Lab.) 

• + possibly (not received yet): Telemac-3D (EDF) 
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P04 – profile 1 – Results at t = 15 s – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 30 s – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 1 min – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 5 min – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 10 min – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 15 min – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 20 min – PROVISIONAL RESULTS 
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P04 – profile 1 – Results at t = 21 min – PROVISIONAL RESULTS 
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As a matter of conclusions (1) 

From a physical perspective:  

• Dispersive effects can be significant: 

• during the generation and propagation of tsunami, in particular for landslide 

tsunamis and small to medium seismic tsunamis. 

The analysis of the dispersion time t has shown the source width 

(or initial wavelength for landslides) l is more important for the 

significance of dispersion than the depth h or propagation distance L. 

• in the shoaling area when the tsunami wave approaches the shore, giving 

rise to undular bore type of waves. 

• Nonlinear effects: 

• Usually negligible for large scale tsunamis in depth water ( = H/h small) 

during the generation and propagation stages. 

(=> linear shallow water eq. could be used in this case). 

• Should however be considered for landslide tsunamis or seismic tsunamis 

in shallow water (moderate to low values of depth h). 

• becomes significant in the shoaling area (nonlinear amplification) in 

decreasing h. 

• Some mechanisms, such as soliton fission (during propagation) and undular 

bore shape (close to the coast), can only be captured if both dispersive and 

nonlinear are taken into account. 

3

26

l
t

Lh
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From a numerical modelling perspective: 

• Never forget that what you get as output of a simulation code is the result of  

 (math./physical model) x (numerical schemes/options) x (discretization choices) 

Differences with measurements/reference solutions may come from any of these 

components (all of them simultaneously most of time…) 

• Important to perform detailed verification and validation studies to appreciate errors 

associated with math. and num. model, and sensitivity/convergence studies to assess 

errors due to discretization of the model. 

=> purpose of the WP1 of TANDEM project. 

• Depending on the type and phase of the tsunami, dispersive and nonlinear effects 

are more or less significant. If one wishes to solve the full dynamics of a tsunami from 

the generation to the coast, it is recommended to use models that are at least mildly 

dispersive and nonlinear, e.g. Boussinesq-type or Serre-Green-Naghdi or, better, 

higher-order models. 

• Of course, computational efficiency may be important (e.g. warning systems), and 

this can limit the level of nonlinearity/dispersion of the model 

=> compromise to find between accuracy and efficiency. 

These remain largely open questions… Work to be continued !            Thank you ! 

As a matter of conclusions (2) 


