### TANDEM Tsunami Summer School

# Coastal impacts: Run up and inundations

#### Riadh Ata, Ph.D. Eng., Expert researcher

LNHE: National Laboratory for Hydraulics & Environment – EDF R&D - France LHSV: Saint-Venant Laboratory for Hydraulics - France



### Tsunami Hazard for NPP

#### **Protection of coastal NPP**

- After Fukushima 2011
- Different aspects of risk
- Design of protection features (dyke, spare generators, ...)









### Tsunami Hazard for NPP

#### How to design ?

#### **Experimental reduced models**

- Mainly for complex features unfeasable (unreliable) numerical simulations
- \$\$\$
- Technical & resources limitations



Tsunami Summer School - Bordeaux 2016

# Hazard conjunction

- High tide coefficients
- storm surge
- Heavy rains
- Underwater contribution
- Dyke failure (breaching)
- ...



Tsunami Summer School - Bordeaux 2016

# Hazard conjunction

· Objectives: avoid this



Bâch e d'effluents déformée près de la SdP tr 5



Moteurs SdP tranche 4

Tsunami Summer School - Bordeaux 2016



Bâch es de fuel lourd arrachées devant tr 1



Tableaux électriques SdM tr 1 – boue au sol

### Run up

"When the tsunami's wave peak reaches the shore, the resulting temporary rise in sea level is termed run up. Run up is measured in metres above a reference sea level"

Western Coastal & Marine Geology.



Tsunami Summer School - Bordeaux 2016

### Run up



#### Some definitions

- Tsunami Amplitude : maximum height of the wave above the sea level in deep water
- Run-up height : tsunami vertical height above sea level at its furthest point inland
- Run-uo factor : run-up height divided by tsunami amplitude
- **Run-up distance :** maximum distance between shoreline and the furthest point inland reached by the wave

Tsunami Summer School - Bordeaux 2016

http://www.sms-tsunami-warning.com

### The Telemac-Mascaret system

#### **Main characteristics**

- Developed since 1987 at EDF R&D / LNHE
- World distributed (first commercial with 200 licences, now freeware and open source)
- FORTRAN 90/95, Perl, Python, MPI
- Based on unstructured grids
- Documentation and validation

#### **Key features**

- FE & FV, Implicit & explicit schemes
- Parallelism with domain decomposition
- Dry zones
- Turbulence
- Free surface
- ...

Tsunami Summer School - Bordeaux 2016







eDF



#### COMPLETE OPEN SOURCE HYDROINFORMATIC SYSTEM

### What model shall we use?

|             | SWE       | Boussinesq | NS        | LagrangianNS  |
|-------------|-----------|------------|-----------|---------------|
| CPU         | Yes       | Yes (but)  | Yes (but) | Yes (but but) |
| Propagation | Yes (but) | Yes        | Yes       | Yes           |
| Breaking    | No        | No         | No        | Yes           |
| Inundation  | Yes       | Yes (but)  | Yes (but) | yes           |

$$\begin{aligned} \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} &= 0 \\ \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \Delta U + F_x \\ \frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + W \frac{\partial V}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \Delta V + F_y \\ \frac{\partial W}{\partial t} + U \frac{\partial W}{\partial x} + V \frac{\partial W}{\partial y} + W \frac{\partial W}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial z} + g + v \Delta W + F_z \end{aligned}$$
Tsunami Summer School - Bordeaux 2016

# What model shall we use?

|                    | Propagation | Runup & inundation | CPU      |
|--------------------|-------------|--------------------|----------|
| High order schemes | +           | -                  |          |
| Dispersion         | +           | - (?)              | <b>—</b> |
| Non newtonian      | -           | +(?)               | <b>—</b> |
| Refined mesh       | -           | +                  | <b>—</b> |

Tsunami Summer School - Bordeaux 2016

edF

# What model shall we use?

Extra term in the Saint-Venant momentum equation:

# $\frac{d\vec{u}}{dt} = \dots - \frac{H_0^2}{6} \overrightarrow{grad}(div(\frac{\partial \vec{u}}{\partial t})) + \frac{H_0}{2} \overrightarrow{grad}(div(H_0 \frac{\partial \vec{u}}{\partial t}))$

Reference depth H<sub>0</sub>: precludes high variations of depth

What is the cost for these extra-terms

- CPU time
- Numerical properties

### What model shall we use?

Serre equations

$$W(z) = \frac{dZ_f}{dt} + \frac{(z - Z_f)}{h} (\frac{dh}{dt})$$
$$\frac{1}{\rho} \frac{\partial p}{\partial z} = -g - \frac{dW}{dt}$$

Extra terms in the Saint-Venant momentum equation

$$\frac{d\vec{u}}{dt} = \dots - h \,\overline{grad} (\frac{\alpha}{3} + \frac{\beta}{2}) - (\frac{\alpha}{2} + \beta) \,\overline{grad} (Z_s) - \frac{\alpha}{6} \,\overline{grad} (h)$$
$$\alpha = \frac{d^2 h}{dt^2} \qquad \beta = \frac{d^2 Z_f}{dt^2}$$

eDF



Island with a parabolic bottom, Boussinesq equations



Waves due to a landslide. Comparing Boussinesq and Saint-Venant equations

Lisbon tsunami in 1755 Comparison of Navier–Stokes, Boussinesq and Saint–Venant equations cross–section after 8000 s



### Some examples

### Tsunami simulation: Lisbon Tsunami



### Tandem Benchmarks





### **Tandem Benchmarks**

Tohoku Tsunami (M. Le Gal PhD)



### NUMERICAL ISSUES FOR PRACTICAL STUDIES

edF

# **Numerical issues**

#### Assumptions validity

- Dispersive effects (for propagation),
- Computational cost
- Breaking or not (physical /numerical)
- Calibration issues

Tsunami Summer School - Bordeaux 2016

• What to include in the model ?



# Numerical issues: assumptions validity

• Continuum (breaking, sloshing, gas-liquid mixture,...)



# Numerical issues: assumptions validity

- continuum
- · Shallow water assumptions (for deep regions)



# Numerical issues: assumptions validity

- Shallow water assumptions (for deep regions)
- Dispersive 2DH models: Representative reference  $H_0$  water depth and wavelegth  $\lambda$

$$\bar{u}_t + \eta_x + \alpha \bar{u}\bar{u}_x - \epsilon \left[\frac{h}{2}(h\bar{u})_{xxt} - \frac{h^2}{6}\bar{u}_{xxt}\right] + O(\epsilon^2, \alpha\epsilon) = 0$$
$$\eta_t + (h\bar{u})_x + \alpha(\eta\bar{u})_x = 0$$

- · Not trivial for shallow areas
- · Not trivial for highly varying bathymetry

eDF

# Numerical issues: assumptions validity

- · Shallow water assumptions (for deep regions)
- Dispersive models: Representative reference  $\textbf{H}_{0}$  water depth and wavelegth  $\lambda$
- · Potential models:
  - Inviscid fluid →less valid near the shore
  - Irrotational flow (curl(u)=0) → restrictive hypothesis
  - Linear theory → limited to small steepness, small relative depths
  - Nonlinear theory: ongoing improvements (talks of D. Lannes and M. Benoît)
  - Elliptic behaving → issues with BC

Tsunami Summer School - Bordeaux 2016

edF

# Numerical issues: assumptions validity

- Continuum (breaking, sloshing, gas-liquid mexture,...)
- Potential theory
- Newtonian fluid



Tsunami Summer School - Bordeaux 2016

# Numerical issues: assumptions validity

- Shallow water assumptions (for deep regions)
- Continuum (breaking, sloshing, gas-liquid mexture,...)
- Potential theory
- Newtonian fluid,
- Multiphysics aspects (tide, atmospheric pressure, wind, vegetation, debris,...)



Courtesy of the CHC

eDF

Tsunami Summer School - Bordeaux 2016

# Numerical issues: assumptions validity

- Continuum (breaking, sloshing, gas-liquid mexture,...)
- Potential theory
- Newtonian fluid,
- Multiphysics aspects (tide, atmospheric pressure, wind, vegetation, debris,...)
- Rigid (undeformable) bed
  - Unphysical coupling
  - DT << eps
  - Sub-iterations \$\$\$
  - Implicitness ?

Tsunami Summer School - Bordeaux 2016



### **Numerical issues : dispersion**

- Dispersive effects (for propagation),
- Numerical dispersion: is it physical ?)
  - ⊖ Wave arrival time
  - ⊖ Wave arrival height
- Breaking or not (physical /numerical)

Tsunami Summer School - Bordeaux 2016



# Numerical issues : what schemes

- Good numerical properties are necessary for the flooding event simulations (talk of A. Durand):
  - No need for high order
  - Well-balaceness
  - Stability positivity of water depth
  - Wet/dry dry/wet transitions
  - Steep bathymetry gradient
  - Good implementation of the bed friction effects

eDF

# Numerical issues : what schemes

- Good numerical properties are necesary for the propagation:
  - · absolute need for high order
  - · At least accurate and with low diffusion
  - Implicit time discretization
  - Stability positivity of water depth
  - Dispersion

Tsunami Summer School - Bordeaux 2016

# Numerical issues: calibration

- Calibration issues
  - Especially for urbain flows (storm surge, non extendable for tsunami)
  - Lack of data for calibration
  - Evolution of urbain areas → calibration stands for short period of time



# Numerical issues: sediment management



#### Dyke Breaching – sediment managing

Tsunami Summer School - Bordeaux 2016

edF

# **Numerical issues: model characteristics**



• What to include in the mesh : everything ?

Tsunami Summer School - Bordeaux 2016

edF

- Turner School Berclaus 2016
- What to include in the model: every(no)thing ?

# Numerical issues: model characteristics

• What to include in the model: every(no)thing ?



• interpolation issues: vertical walls, dykes, breakwater,...



### Numerical issues: model characteristics

• interpolation issues: vertical walls, dykes, breakwater,...



#### • Refine urbain area (avoid over-constrained elements)



### Numerical issues: model characteristics

#### Refine the mesh - include everything

- 60% of Engineer time is for preprocessing
- Up to 80% for urbain models



#### How to avoid these awful tasks:

Porosity: Taking into account the volume of small obstacles that cannot be represented in a mesh

 $\frac{\partial(\theta h)}{\partial t} + div(\theta h\vec{u}) = 0$   $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -g\frac{\partial Z_s}{\partial x} + F_x + \frac{1}{h\theta}div(h\theta v_e grad(u))$   $\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -g\frac{\partial Z_s}{\partial y} + F_y + \frac{1}{h\theta}div(h\theta v_e grad(v))$ 

edF

# Numerical issues: model characteristics

#### How to avoid these awful tasks:

Drag force: Taking into account the drag effect of small obstacles that cannot be represented in a mesh

$$\vec{F} = -\frac{n}{A}\frac{D}{2}C_D \|\vec{U}\|\vec{U}$$

For n obstacles of diameter D spread on a area A

With a drag coefficient C<sub>D</sub>

#### Taking into account drag forces (cf. Talk of BRGM)

Sink term for submerged structures (e.g. turbines) :





# **Numerical issues**

• What to include in the model ?



### NUMERICAL ISSUES: FOCUS ON TIDAL FLATS

Hydrostatic reconstruction: Audusse et al. (2004) Noelle et al. (2016)

- Well-balaceness:
- Positivity ensuring
- wetting/drying transition

Drawbacks: not accurate for some extreme cases

See talk of A. Durand

edF

# **Tidal flats for FE**

#### Problem 1: propagation on dry zone (wetting)

Comparing advection solvers on the 1D dam break test case

advection of velocities: method of characteristics versus new finite volumes scheme for tidal flats





### **Tidal flats for FE**

#### Problem 3: A lake at rest



→ Standard discretisation fails

Tsunami Summer School - Bordeaux 2016





### **Tidal flats for FE**



Tsunami Summer School - Bordeaux 2016

#### **Available solutions:**

#### Solution 1: Clipping+use of minimum depth

If h < hmin then h=hmin Problems: mass conservation, water flowing on banks



#### Keywords: H CLIPPING, MINIMUM DEPTH

53 Tsunami Summer School - Bordeaux 2016

edF



#### Solution 2: masking (Cont'd)

- 1) Criterion for removing an element (hmin ??)
- 2) Criterion for putting back an element (celerity of flood waves)
- 3) Topology of finite element meshes
- 4) Book-keeping of water and tracers remaining in removed elements



Can be envisaged for steady state flows or slowly varying free surfaces (OPTION FOR THE TREATMENT OF TIDAL FLATS: 2)

55 Tsunami Summer School - Bordeaux 2016

edf

# **Tidal flats for FE**

Solution 3: Free surface gradient correction

Main problem of dry zones: their wrong free surface gradient



**Step 1**: identifying elements with tidal flats problems Those where a bottom is higher than a free surface

56

Tsunami Summer School - Bordeaux 2016

Solution 3: Free surface gradient correction

Main problem of dry zones: their wrong free surface gradient



# **Tidal flats for FE**

Solution 3: Free surface gradient correction

Main problem of dry zones: their wrong free surface gradient







# **Tidal flats for FE**



### **Dealing with negative depths**

Negative depths are not a problem for mass conservation (as soon as continuity is solved) and can be kept in a computation, but they must remain small. They don't if not treated specifically.

In all cases, the continuity equation must be corrected:

$$\frac{\partial h}{\partial t} + div(\max(h,0)\vec{u}) = 0$$

Specific treatment: two options

#### TREATMENT OF NEGATIVE DEPTHS: 2

Continuity equation is solved by a specific edge-based algorithm that keeps depths positive (this is another lecture in itself)

TREATMENT OF NEGATIVE DEPTHS: 1

Negative depths are smoothed

61

Tsunami Summer School - Bordeaux 2016

edf

### **Friction in Saint-Venant**

Bottom stress in Navier-Stokes equations:

$$\frac{1}{\rho} \underline{\mathfrak{r}}_f . \vec{n}_f$$

1

Stress computed with horizontal velocity:

tity: 
$$\tau_f = -\frac{1}{2}\rho C_f \|\vec{u}\|^2$$

Chézy law (for non conservative form)

$$\vec{F} = -\frac{1}{\cos(\alpha)} \frac{g}{hC^2} \sqrt{u^2 + v^2} \vec{u}$$

Strickler law (for non conservative form)

$$\vec{F} = -\frac{1}{\cos(\alpha)} \frac{g}{h^{4/3} K^2} \sqrt{u^2 + v^2} \vec{u}$$



1

$$C = KR_h^{1/6}$$

 $Cos(\alpha)$  : cosinus of slope

And ... What Else ?



### **Uncertainty Quantification**





### **Uncertainty Quantification**

### **Codes coupling**

#### **Multiphysics coupling**

- waves-hydrodynamics (internal)
- Sediment hydrodynamics (internal)
- Water Quality hydrodynamics (internal)
- groundwater flows hydrodynamics (internal ongoing )
- wave sediment hydrodynamics (internal ongoing)
- hydrology hydrodynamics sedimen<sup>\*</sup> (ongoing)
- hydrology hydrodynamics WAQ (ongoing)

#### **Multi-dimensions coupling**

- Through SALOME and PALM coupling platforms
- 1D-2D longitudinal
- 1D-2D transversal
- 2D-3D SWE-NS
- OD-1D hydrology-hydraulics

Tsunami Summer School - Bordeaux 2016



But the question is ...

edf

Are we safe?



eDF

### **Of course YES !**



### With mangrove we can be safer





Koh et al. (2009); Gunawan et al. (2014)

Tsunami Summer School - Bordeaux 201



29/04/2016

# Thank you for your time

Tsunami Summer School - Bordeaux 2016

edF