

Coastal impact of a tsunami Review of numerical models

Richard Marcer

Physics to simulate

Different approaches of modelling

- 2D depth average
- Full 3D Navier-Stokes

3D model

- Key point : free surface simulation
- Loads on structures
- Synthesis on the validity domain of the different approaches

Coastal impact of a tsunami

Complex physics

 \Rightarrow From 2D large scale (including source) to 3D local scale problem

- Shoaling, refraction, up to breaking
- Breaking
 - Two-phase flow with interface
 - Entrapped air pockets
 - Emulsion (mixing of water and bubbles)
 - Turbulence
- Runup, Flooding
 - Friction on bottom, roughness
- Fluid / structure interactions
 - Hydrodynamic loads on structures
 - Possible collapse of the structures
 - Debris moving in the flow

TANDEM – tsunami school, Bordeaux, 28/04/16

Richard.marcer@principia.fr

2D depth average models

Saint-Venant (Non linear shallow water)

$$\frac{\partial \xi}{\partial t} + \nabla . ((\xi + h)\overline{u}) = 0$$
$$\frac{\partial \overline{u}}{\partial t} + \overline{u} . \nabla \overline{u} + g \nabla \xi = 0$$
$$P = \rho g(\xi - z)$$

 \bar{u} : mean velocity ξ : wave elevation

- Shallow water (h<<λ) and non dispersive
- Hydrostatic flow and constant horizontal velocity in water depth
- Friction model at the sea bottom (Chezy, Manning coefficients)
- Breaking
 - Quite good for energy dissipation
 - But free surface not well represented
- Low CPU time consuming

Boussinesq

- Dispersive
- Non hydrostatic

BIEM model

Boundary Integral Element Method (BIEM)

- Perfect fluid
- Irrotational
- Very accurate for shoaling up to breaking
- No valid after breaking (large deformation of FS, reconnection, vorticity)

Navier-Stokes models

Navier-Stokes 3D

- Highest validity domain
- Viscous, rotational, turbulence
- Able to simulate all the breaking process
- Loads on structures
- But large CPU time consuming

Examples of applications

2D depth average model of the Tohuku Tsunami in Japan (large scale)

3D Navier-Stokes : tsunami impacting an urban area (local scale)

Focus on the Navier-Stokes model

System of equations (URANS)

• Mass
• Momentum (3)
$$\rho \frac{\partial U_i}{\partial t} + \rho U_j \frac{\partial U_i}{\partial x_j} = \rho g \delta_{i3} - \frac{\partial P}{\partial x_i} - \frac{\partial}{\partial x_j} \left((\mu + \mu_t) \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right)$$

- + free surface model
- + if necessary
 - thermal / salinity equations
 - state of the law : ρ =f(T,S)

Navier-Stokes model main characteristics /hypotheses

2-phase flow

- Separated air/water phases (sharp interface)
- But possible emulsion : bubbles and water mixture
- Ideally including compressible air phase
- Free surface model : eulerian, lagrangian
- Turbulent
 - DNS / LES (much CPU consuming)
 - RANS (k-ε, k-ω,...): the most widely used
 - Reynolds tensor $\rightarrow \mu_t$ turbulent coefficient diffusion
 - Boundary layer model
 - logarithm law of the wall (high Reynolds model)

Roughness

- Macro: buildings, breakwaters,...
- Micro:
 - Bottom friction (roughness coefficient ks in boundary layer model)
 - Porosity of the media (pressure loss)

Free surface models for Navier-Stokes

- Interface tracking
 - Deforming mesh

Figure 1. Interface tracking.

Interface capturing

- Volume Of Fluid (VOF)
- Level Set
- Scalar color function

SPH

Lagrangian

11

Free surface models – most commonly used

Model	Strenght	Weakness / difficulty
BIEM	Low numerical dissipation Accuracy	Not valid for breaking (when reconnection)
Front tracking	Interface directly followedFor large deformationAccuracy for quite smallthe interfacedeformation	
Level set	Easy interface reconstruction	Mass conservation Necessity to frequently reset level set function
VOF	Intrinsic mass conservation Well adapted for large deformation, break-up, reconnection	Possible loss of mass
SPH	Meshless Well adapted for large deformation Break-up, reconnection	Free surface conditions, viscosity / turbulence CPU and memory cost to reach a good accuracy

Wave impact on structures

Fixed structures (ex: breakwaters)

- Influence on the flow (reflection, diffraction, overtopping)
- Possible collapse
- Flowing debris

Kamaishi Bay (Japan)

Structures laid on the sea bed

- Possible motion
 - Sliding (balance frictional force / weight)
 - Capsizing

Loads on structures

Loads

- 3D hydrodynamic loads (Navier-Stokes) applied on structure
- Components of the total load
 - Translation (3)
 - Rotation (3)

Х

Loads on structures

3D hydrodynamic loads to compute

- Dynamic pressure
- Viscous
- Hydrostatic
- Buoyancy

♦

PRINCIPIA

Wave impact on structures

Fluid / structure modelling

- Coupling Navier-Stokes / mechanical if structure in movement (ex. debris)
 - Acceleration / velocity / position of the structure issued from integration of the mechanic laws with hydrodynamic loads as forcing
 - 6 DOF (Degrees Of Freedom) motions

Х

Synthesis - validity domain of the different models

	Tsunami physics to model				
	Propagation	Breaking		Run-up / flooding	Loads on structures
Saint-Venant					Preliminary
Boussinesq					approximation
BIEM		Before	After		
Navier-Stokes					
Coupling 2D/3D	2D (or BEM)	3D		3D	3D

appropriate
possible
not relevant
inappropriate

Going further with a 2D / 3D coupling

- Direct calculation of the tsunami from generation up to coastal impact
 - 2D propagation at large scale with depth average model
 - 3D impact at local scale with Navier-Stokes and using 2D model inputs (wave elevation and velocity)

3D local scale model of the Kamaishi Bay

2D large scale model of the Tohuku Tsunami

Remerciements

Kevin Pons (doctorant à Principia)

Merci pour votre attention !

