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Motivation

Finding clothes that fit is the biggest problem for customers shopping Return Reasons

fashion online and offline. Supporting customers on their size and fit

purchase decision in e-commerce context is particularly challenging:

e Thousands of new articles get activated everyday with short lifetime

e Return process takes from few days to few weeks resulting in zero or
a few sales and returns data points for new articles

Others

Contributions

In this paper we introduce a novel teacher-student approach on fashion images to:
e Investigate and demonstrates the rich value of fashion images in inferring size

characteristics of fashion apparel
o Effectively tackle the challenging cold start problem of providing size advice for new
articles with zero/few return data

e Generate large scale confidence-weighted weak annotations from crowd’s subjective
feedback- enabling us to control the influence of weak annotations on the final model

Related Work

Teacher-Student Transfer Learning
Transferring knowledge from privileged information space to decision space [1]:
e Teacher leverages privileged historical weakly annotated data of sales and returns

e Student uses this knowledge to learn from images in decision space
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SizeNet: Learning Visual Size Cues
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We formulate the sizing issue as a binary classification considering that:
o Article categories have different size related return rate

o Article sales period influences the return rate

TEACHER  gtatistical Model: £ = [!jp*(1 — p)"*.
L. binomial likelihood, p: expected size return rate of article category, k:
number of article size returns, n: number of article sales. The estimator

score is define as s = — In (£)
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CNN Backbone Feature Extractor
Transfer knowledge using bottleneck features of pre-trained network

o ResNet [2] pre-trained on ImageNet [3] dataset
stupenT °FashionDNA [4] Resnet-like pre-trained on rich in-house fashion dataset
MLP: Multi-Layer Perceptron
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4 fully connected layers with nonlinear activations. Use weighted binary
cross entropy loss based on estimator confidence score w = In (1 + s); the
logarithmic transformation reduces the score skewness
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Evaluation

Dataset Women textile including 12 categories such as dresses, blouses, jeans, skirts, etc.

: Class #Articles # Images

size issue 68,892 69,064

no size iIssue 58,152 58,321
total 127,044 127,385

Attributes Baseline
Replace article images with sparse k-hot encoding of
human annotated binary fashion attributes — fashion &=
Images achieve comparable results

Weights Importance

o
o

o
AN
Accuracy
o
(0 0]
o

True Positive Rate

" —— Attributes-AUC = 0.78
—— SizeNet-AUC = 0.74
—— ResNet-AUC = 0.70

Exploiting weights offers better generalization capacity e, feweer o e

—— with sample weighting
—— without sample weighting

False Positive Rate

Student Prediction vs. Teacher Confidence

BOTTOM RIGHT almost no samples are misclassified by SizeNet when ; B8
Teacher Is certain of no size issue; TOP LEFT high density of correctly
predicted samples by SizeNet where Teacher is unsure; TOP RIGHT sam- = &
ples show that SizeNet has learned accurately from Teacher; BOTTOM LEFT *: - LI

SizeNet misclassifies fewer samples where Teacher is unsure

Size Issue Explanations using RISE [5]
True Positives show localized heatmaps where False Positives are affected by article design
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