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Abstract
This paper addresses the challenge of active speaker detection in automated video editing and highlights the limitations of
current audio-only and audio-visual speaker detection methods in handling unseen data with overlapped speakers, speaker
occlusions, low video resolution, and random noises. Firstly, we select the BBC Old School Dataset, a comprehensive dataset
introduced for automated video editing, and annotate it with active speaker labels. We propose an audio-based nearest neigh-
bour algorithm that utilizes additional inputs, such as audio samples of each speaker and faces, to predict and track the active
speaker. We evaluate the effectiveness of our approach on the BBC Old School Dataset by utilizing f rame-level speaker accu-
racy, which we consider a more suitable metric in the context of video editing. We observe that this simple setup outperforms
the current state-of-the-art methods in predicting the active speaker. By incorporating these methods into our speaker-based
editing approaches, we also notice that our method closely approximates the output obtained using ground truth annotations.

CCS Concepts
• Computing methodologies → Computational photography; Supervised learning; Object identification;

1. Introduction

Awareness of the person speaking at a given moment (active
speaker) is crucial in video editing, especially in dialogue-driven
scenes. Simpler editing styles like Dragnet (described by Murch in
his book [MW01]) rely entirely on the active speaker information.
In Dragnet style, both the video and audio of each character’s en-
tire line are included within each edit, and the editing process is
akin to a tennis match, with rapid back-and-forth cuts that leave no
space for reaction. The other more sophisticated cuts like L-cuts or
J-cuts also hinge upon the knowledge of the active speaker, where
the voice of the person seen in the outgoing shot continues, or the
sound of the speaker who is about to be shown is heard before the
cut happens. Just like human editors, accurate knowledge of the
active speaker is essential for the realm of automated editing.

Naturally, majority of prior research efforts towards automated
editing heavily rely upon active speaker information [LDTA17,
MKSG20, GRLC15]. However, identifying and detecting the ac-
tive speaker remains challenging for automated editing systems,
unlike human editors who can do so effortlessly. Most existing
methods either assume that the active speaker information is avail-
able [GRLC15] or utilize handcrafted features and methods to de-
tect it [LDTA17]. To this end, evaluating the applicability of current
state-of-the-art active speaker detection algorithms in the context of
automated video editing is essential. This work uses the Old School
Dataset(OSD) [old22] to assess different ASD algorithms. OSD is

professionally collected by BBC research and is arguably the most
comprehensive benchmark for automated editing.

Each camera view in the Old School Dataset provides zoomed-
out wide-angle shots of the scene, covering activity from multi-
ple actors. The automated editing task involves both virtual camera
simulations [GVR∗14] and camera selection (both in terms of view
and the virtual shot [MKSG20]). The wide-angle views provide an
apt and varied scenario for assessing ASD algorithms, deviating
from typical medium-close-up shots (e.g., newsroom). We manu-
ally annotate the OSD with active speaker labels. We then evaluate
different ASD algorithms in two ways. First, we evaluate them on
frame-level accuracies for correctly detecting the active speaker(s).
It is aimed to bring insights into the applicability of different ASD
approaches in wide-angle shots, where the face sizes are small and
have varying poses. Second, we use the noisy, active speaker in-
formation for the task of shot selection in OSD. We compare them
against the edits obtained using the ground truth speaker labels and
evaluate them with the expert ground truth edits provided with the
OSD dataset.

We evaluate three classes of ASD algorithms: (a) Audio-Visual
algorithms [TPD∗21], (b) Diarization based algorithms, with man-
ual cluster assignments, and (c) Nearest Neighbour-based speaker
verification given a few reference utterances from each of the ac-
tors. In the audio-only algorithms (i.e., (b) and (c)), we additionally
utilize a single-face photo of each of the actors to localize them in
the scene. We plug the output of each of these algorithms into a
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simplified computational editing algorithm that aims to maximize
the visibility of the active speaker while avoiding fast/jump cuts.
We want to emphasize that the goal of our work is not to present
a comprehensive editing algorithm, and we realize that simplified
editing does not reflect the grammar of complex exchanges that go
on all the time in even the most ordinary conversations. Our work
aims to instead reflect upon the role ASD algorithms play in editing
and the extent of their usability in the current form.

Our evaluation suggests that the performance of the audio-visual
ASD algorithms remains below par in the studied setup. We find
that the minimal nearest neighbour-based algorithm combined with
a face verification/tracking strategy provides the best performance.
We also find that when combined with a dynamic programming
optimization based editing framework, it comes close to the edit-
ing performance achieved while using the ground-truth speaker la-
bels. The experiments suggest that having additional information
(e.g. few utterances and one photo of each actor) helps alleviate the
challenges for ASD in the studied setup. Overall, our work makes
the following contributions:

1. We annotate BBC’s Old School Dataset with active speaker la-
bels. We also provide annotations for background noise, buzzer
press, silence etc. allowing them to be used in automated editing
research.

2. We set up and evaluate three different classes of ASD algorithms
for active speaker detection in the OSD. We employ an off-the-
shelf audio-visual algorithm and adapt purely audio-based al-
gorithms for ASD by utilizing face verification combined with
visual tracking.

3. We present comprehensive results and discussion on the ef-
ficacy of these algorithms when employed with a dynamic
programming-based editing framework.

The remaining sections of the paper are structured as follows:
Section 3 will provide a detailed explanation of the OSD Dataset
and the process of annotation. Following that, in section 4, we will
delve into the methods used for ASD and video editing algorithms
that were considered for this study. The evaluation of ASD algo-
rithms will be discussed in the experiments section, along with the
video editing techniques used on the OSD Dataset using various
inputs and approaches.

2. Related Works

Active speaker detection (ASD) algorithms aim to identify active
speakers in a scene [RCK∗20]. ASD requires input from both visual
and audio modalities. If we have beforehand knowledge of the ac-
tor’s faces and their corresponding voices in a scene, then ASD can
be performed by pure audio-based diarization [CHN∗20b]. In the
wild setting, where such information is unknown, recent methods
apply deep neural networks on face tracks to detect if the voice is
synchronized with the lip and face movement [CZ17]. Our work in-
vestigates a controlled setup where the numbers of actors and their
identities are known upfront; hence, both approaches are applica-
ble. We briefly review the advancements in speaker diarization and
ASD below. We then discuss automated editing algorithms that uti-
lize active speaker information.

2.1. Speaker Diarization

Speaker diarization is the process of separating an audio record-
ing that contains multiple speakers into distinct segments based on
the speaker’s identity. Most speaker diarization systems [SGR15,
GRSS∗17, WDW∗18] consist of multiple relatively indepen-
dent components (a) a speech segmentation module, which re-
moves non-speech segments, (b) a module to extract speaker-
discriminative embeddings [DKD∗10, WWPM18], (c) a clustering
module and (d) a refinement module which enforces additional con-
straints to further refine the diarization results [SGR15]. More re-
cent attempts have aimed to consolidate these modules and train di-
arization in an end-to-end manner. The end-to-end Neural Diariza-
tion (EEND) family of approaches [FKH∗19a,FKH∗19b,BYC∗20,
BL21] model diarization as a multi-label classification problem us-
ing permutation-invariant training.

2.2. Audio Visual ASD

In the early days of Audio Visual Automatic Speaker Detection
(ASD), basic visual features such as upper body [SBM21] and
facial [PIT∗16] movements were utilized to predict the active
speaker. However, the effectiveness of this method was limited
due to the weak correlation between body movements and speech
activity. Later, the combination of audio and visual information
proved to be much more beneficial in performing ASD [EML∗18].
Audio Visual Fusion techniques approached the task by assign-
ing speech to one of the speakers in a video [ACM∗20]. Some
methods view ASD as a classification model that evaluates each
speaker in the video and outputs an active speaker label for each of
them [AOCZ20]. Lately, various deep learning architectures have
been proposed like [TPD∗21] with attention mechanism, and Graph
Neural Networks [MRT∗] have been developed and have provided
significant performance improvements in ASD.

2.3. Video Editing

Several previous automatic editing methods employ speaker in-
formation for editing. Classical computational editing systems
[IOM95, LRGC01, RGC01, RBB08], for example, use speaker de-
tection algorithms to determine who is talking and select a cam-
era known to have a shot of that person. More recently, [GRLC15]
proposed an optimization-based approach for automatically creat-
ing well-edited movies from a 3D animation. They employ speak-
ing as one of the main action categories. Work by [LDTA17] pro-
poses an editing framework based on a user-specified set of film-
editing idioms. They employ idioms like speaker visibility, which
ensures that the speaker of each line of dialogue is visible. The
work by Moorthy et al. [MKSG20] suggests that speech-based edit-
ing scores highly with respect to conveying actor emotions. We
take a similar approach to [MKSG20] and replace gaze potential
with speaker potential. Our work is also related to previous works
that pose video editing as a discrete optimization problem, solved
using dynamic programming [EDRM07], [GRLC15], [LCCR11],
[MCB16].
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Figure 1: Screenshots of a scene from 4 different camera views in the Old School BBC Dataset. Screenshots from Camera 1 to Camera 4
can be seen from left to right.

3. BBC Old School Dataset

We take the publicly available BBC Old School Dataset for our
study. The dataset consists of raw footage of a multi-camera shoot
of a game show called Old School. Screenshots from different cam-
era views of the dataset videos can be visualized in [Figure-1]. The
dataset also provides processed videos of the raw footage, which
are multiple takes of different scenes of the show. They also provide
a human-edited programme as a benchmark for automated editing
systems. We use the Edit Decision List (EDL) corresponding to the
human-edited programme to extract videos of a total duration of
30 minutes from the processed shoot videos. We provide ground
truth speaker annotations for these videos taken from one camera
view, and these speaker annotations are the same for all the camera
views.

3.1. Annotation Process

We use the open-source project VIA tool for annotations. Its GUI
and annotation process can be visualized in [Figure-2]. We follow
the below steps for annotation:

3.1.1. Generating Face and Voice Tracks

For face crop tracks generation, we follow the steps described in
the face track annotator of VIA tool. We first automatically gener-
ate face tracks using VGGFaceTracker [KMSZ12,RHGS15]. Then
we manually filter, select and update the annotations. For all the
videos, we manually generate voice tracks by watching the video
and listening to the audio stream concurrently. Human annotators
refined the start and end of speech segments to get accurate labels
for the segments. We merge neighbouring segments of the same
speaker if the gap between the segments is less than 1 second. We
also consider the speech segments even if it is less than 1 second
and generate voice tracks and labels for such segments. In addition
to the speaker’s voice tracks annotation we also provide labels for
off-screen speakers, and non-speech sounds like bell ring, buzzer.
As a final step, the annotations are manually verified by 3 annota-
tors to get quality labels.

3.1.2. Labelling the face and voice tracks

As all the videos in the dataset have the same set of speakers, video
level identity labels of speakers are the same across all the videos.

3.2. Dataset Statistics

The dataset consists of 18 video clips with a total duration of about
30 minutes. There are 5 unique identities with voice tracks and

faces. There is only one off-screen speaker in the data. Bell ring
and Buzzer sounds are the non-speech sounds.The total duration
of overlapped speech segments and speech activity in the video
amounts to 1.3 minutes and 25 minutes respectively.

4. Methodology

We describe different types of active speaker detection methods
used and the ways we rely on speaker information in the task of
video editing with different approaches

4.1. Speaker detection methods

We have used Audio Visual Active Speaker Detection (ASD),
Audio-based Speaker Diarization and Audio-based KNN Classifier
methods for speaker detection

4.1.1. Audio Visual Active Speaker Detection(ASD)

Active Speaker Detection (ASD) models predict the active speaker
at the frame level. An Active Speaker in a video is a speaker whose
face is visible and audible simultaneously. We consider TalkNet
[TPD∗21] an ASD model for our experiments. TalkNet is a clas-
sification model that takes cropped faces in the video and corre-
sponding audio as input and outputs active speaker labels for each
face. The model consists of a feature representation frontend and a
speaker detection backend. The frontend generates visual and audio
spatio-temporal features and the classifier backend consists of an
inter-modal cross-attention and self-attention mechanism followed
by a classifier head to generate the active speaker label.

4.1.2. Audio-based Speaker Diarization

In our work, we employ the recent state-of-the-art EEND method
proposed by Bredin et al. [BYC∗20, BL21].The model trained
on the AMI, VoxConverse, and DIHARD datasets [MCK∗05,
CHN∗20a, RSK∗21] is used in our experiments.

4.1.3. Audio-based KNN Classifier

We use K-Nearest Neighbour (KNN) Classifier for our approach.
We take three 10 second audio samples of each speaker to form the
search space and perform nearest neighbour search of a test sample
to get the class label prediction. We take the majority class label of
the top-K nearest neighbours as the test sample label.

We generate X-vector speaker embeddings [SGRM∗18] with a
pre-trained TDNN model using SpeechBrain [RPP∗21]. These em-
beddings will now become our search space for the KNN algo-
rithm.
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Figure 2: Annotation tool and process for speaker annotations. Background is the off-screen speaker, Bell ring is the non-speech sound.

For a given video, we perform a sliding window approach
and predict labels for each segment through K-nearest neighbour
search. For segments with more than one predicted label, we take
the label with the highest similarity measure. We use cosine simi-
larity as the similarity measure.

4.2. Video Editing

Here we describe the ways we leveraged active speaker informa-
tion (Speaker Potential)in the task of video editing with two dif-
ferent approaches, i.e. Speaker Guided Greedy Editing(SGE) and
Speaker Guided Optimization Editing(SOE). We also describe the
pre-processing steps like Shot Generation which is required for
both the approaches

4.2.1. Shot Generation

In the BBC old school data set, we are given multiple camera views
for a video and a human-edited video. We employ the algorithm
[GVR∗14] for shot generation. For example, in a 3 actor video, we
generate three 1-shots (shots with a single actor), two 2-shots (shots
with 2 actors) and one master shot (shot that includes all actors).
Similarly, for n actor video we generate a total of n(n+1)

2 shots.

For shot generation, we need tracks of the actors in a frame
(bounding boxes). We use ByteTrack [ZSJ∗22], which is a Multi-
Object Tracking method that estimates bounding boxes and iden-
tities of objects in videos. They adopt an object detector YOLOX
[GLW∗21] to detect the bounding boxes with a confidence score. In

the first step of the algorithm, the bounding boxes are divided into
high-confidence and low-confidence score bounding boxes. In the
second step, it tries to associate the high-confidence score bound-
ing boxes with the tracklets and then associates the low-confidence
score bounding boxes with the unmatched tracklets.

We use ByteTrack for its efficiency and its ability in handling
special scenarios like person occlusions, crossing past each other
etc, which are comprised in OSD.

4.3. Speaker Potential

Speaker potential [2] quantitatively measures the importance of
each shot at every time instant. Previous works [LDTA17] and
[GRLC15] estimate the actions/emotions in a given shot by ei-
ther relying on additional meta-data or bottom-up computational
features. [JSSH15] and [RKGS18] have shown that the gaze data
recorded from users enables effective localization of focal scene
events. We extend this idea to calculate speaker potential similar
to that of gaze potential in [MKSG20] of each shot s using active
speaker information at each time frame t.

Assuming we have active speaker information (the actor who
spoke at that instant of time) per each frame, we determine the
speaker potential for each shot. We adopt a bottom-up approach,
we first calculate the speaker potential of (lower-order shots) single
shots, which capture individual actors using [1].
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S(sx
t ) =

{
λ x is speaker
0 otherwise

(1)

where sx
t refers to a shot s at time t that contains a single actor x

Speaker potential for shots with multiple actors (higher-order
shots) is then computed from the speaker potentials of constituent
lower-order shots using [2].

S(sab
t ) = S(sa

t )+S(sb
t )−|S(sa

t )−S(sb
t )| (2)

where sab
t refers to a shot s at time t that contains set of actors

{a,b}

For instance, speaker potentials of two 1-shots S(sa) and S(sb)
can be used to compute the speaker potential of a 2-shot S(sab).
Similarly, speaker potentials of two 2-shots S(sab) and S(sbc) can
be used to compute speaker potential of a 3-shot S(sabc)

It can be seen in equation [2] if there is only one speaker 1-shot
with the active speaker gets high speaker potential. If a and b are
the active speakers, the 2-shot(S(sab)) that contains both the active
speakers gets the maximum speaker potential.

4.3.1. Speaker Guided Greedy Editing

For speaker-guided greedy editing(SGE) we select the shot that best
captures the speaker from the generated shots. For speaker informa-
tion, we use manual annotations and active speaker detection net-
works. When more than one person speaks simultaneously, their
combined shot is selected. The algorithm continues with its cur-
rent selection until a change of speaker occurs. A minimum shot
duration (l) is enforced to avoid rapid shot transitions. If a silence
lasting L seconds is detected, we display a wide shot during that
particular segment of silence.

4.3.2. Speaker Guided Optimization Editing

GAZED [MKSG20] is an end-to-end system to automate the video
editing process for staged performances. It outputs an edited video
that adheres to common cinematic principles and is aesthetically
pleasing to watch. In the regular Gazed approach we use gaze po-
tentials which are then combined with other terms that model cine-
matic principles like avoiding jump cuts, rhythm (pace of shot tran-
sitioning), avoiding transient shots etc. But with speaker-guided op-
timization editing(SOE), we rely on active speaker information to
build speaker potential [2] instead of the human gaze. Speaker po-
tentials assign a higher cost to shots with an active speaker, which
will enforce the dynamic programming optimization framework to
select the shot with greater speaker potential by constraining other
cinematic principles. The underlying algorithm poses shot selec-
tion as a discrete optimization problem, which examines the im-
portance of each of the multiple shots generated for every video
frame, while adhering to cinematic principles like avoiding cuts
between overlapping shots (termed jump cuts), avoiding rapid shot
transitions, maintaining a cutting rhythm, etc. Cinematic principles
are modelled as penalty in the term Ee(st−1,st) where st repre-
sents shot s at time frame t. This penalty term is the sum of three

different costs, namely shot transition cost, shot overlap cost, and
cutting rhythm cost as described in [MKSG20]. The final solution
is obtained via a search for the optimal path through an editing
graph. In SOE setting the shot selection will ensure to follow cine-
matic principles and provide an aesthetically pleasing experience to
watch which isn’t constrained in SGE approach. As there could be
incorrect active speaker predictions from active speaker detection
networks, cinematic-motivated penalty terms do also work as an
error recovery mechanism (to not make bad mistakes) in some sce-
narios. Unlike the greedy approach, the optimization-based method
cannot run in a real-time setting as it needs to construct a complete
cost matrix to get a minimal cost path. This approach has a higher
memory footprint compared to the greedy approach as it needs to
build an editing graph for optimization framework and backtrack
for the optimal cost path. For a video with f frames and n actors,
it will have a space complexity of O(2n − 1 ∗ f ). We also propose
that our SOE framework with cinematic principle penalizing terms
is open to extension for other useful information such as action etc,
but not limited to human gaze or active speaker.

Formally, given a sequence of frames t = [1..T ], the set of gen-
erated shots (rushes) St = {st

i}
2n−1
i=1 and the active speaker infor-

mation at corresponding to active speaker a at time frame t, our
algorithm selects a sequence of shots ε = {rt}, rt ∈ St for each
frame t minimising the objective function [3]

E(ε) = Σ
T
t=1 − ln(S(rt))+Σ

T
t=2 Ee(rt−1,rt) (3)

where S(rt) that represents speaker potential for each shot and
Ee(rt−1,rt) represents cost for transitioning from one shot to an-
other.

We solve equation [3] using dynamic programming. The algo-
rithm outputs a sequence of shots rt (where r is the selected shot
at time frame t) from the set of shots generated over time {St}. We
build a cost matrix C(rt , t) where rt ∈ si

t and t = [1..T ], each cell is
computed with recurrence relation [4]

C(rt , t) =

{
−ln(S(rt)) t = 1
mink[C(rk, t −1)− ln(S(rt))+Ee(rk,rt)] otherwise

(4)

For each cell in the matrix, we compute and store the minimum
cost to reach it. Once the matrix is built, we then perform back-
tracking to retrieve the sequence of optimal shots.

5. Experiments

We perform all our experiments on the timeline edit videos from
OSD. Our experiments are of two parts. We first predict the speak-
ers at frame level using TalkNet, pyannote and KNN algorithm on
the dataset videos and evaluate using frame level speaker accuracy.
In the second part, we perform video editing using the speaker
predictions from all three models from the first part and ground
truth speaker data. We evaluate the three ASD approaches in the
context of video editing using frame level editing accuracy.
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Frame Level Accuracy
Duration(sec) TalkNet(ASD) Pyannote KNN

cam1 cam2 cam3 cam4 All cameras
Full video 1768.64 54.51% 52.10% 52.76% 50% 73.71% 83.5%

Clip #1 192.76 58.29% 57.38% 51.97% 53.13% 84.98% 89.41%
Clip # 2 80.52 56.83% 56.20% 54.44% 54.32% 89.87% 91.15%
Clip #3 153.92 55.38% 53.12% 54.41% 53.12% 33.10% 88.73%
Clip #4 106.84 53.28% 49.47% 53.80% 46.63% 90.12% 86.00%
Clip #5 140.72 49.41% 47.46% 52.62% 51.51% 13.95% 86.17%
Clip #6 23.64 49.67% 47.66% 52.39% 51.02% 52.70% 86.28%
Clip #7 85.2 47.76% 46.09% 50.63% 52.91% 17.31% 85.54%
Clip #8 6.8 47.70% 46.06% 50.47% 52.65% 40.35% 85.63%
Clip #9 103.04 47.48% 46.07% 49.44% 51.75% 49.82 83.97%

Table 1: Frame Level Accuracy for the Full Video and Specific Segments.

Editing Accuracy with TalkNet predictions Editing Accuracy With GT Speaker Annotations Editing Accuracy with KNN Speaker Predictions
Duration(sec) Speaker Greedy Speaker Optimization Speaker Greedy Speaker Optimization Speaker Greedy Speaker Optimization

Cam 4 Cam 4 All Cameras All Cameras
Clip #1 192.76 46.99% 50.33% 71.63% 79.85% 66.33% 77.94%
Clip # 2 80.52 50.05% 58.06% 66.54% 76.49% 61.22% 76.39%
Clip #3 153.92 61.23% 66.76% 82.77% 88.00% 71.88% 78.79%
Clip #4 106.84 47.06% 61.40% 80.50% 85.37% 65.64% 71.93%
Clip #5 140.72 45.92% 50.45% 67.89% 74.68% 55.38% 72.40%
Clip #6 23.64 60.67% 66.88% 88.40% 92.74% 75.96% 80.57%
Clip #7 85.2 47.77% 52.75% 71.45% 74.21% 58.76% 66.71%
Clip #8 6.8 51.71% 58.91% 66.00% 68.42% 64.88% 68.42%
Clip #9 103.04 42.17% 52.56% 64.33% 65.75% 58.95% 60.48%

Table 2: Editing Frame level accuracies with ground truth and predicted speaker annotations using various methods.

We experiment with an Audio Visual ASD model TalkNet.
TalkNet is pretrained on TalkSet data pretrained on AVA-Active
Speaker dataset. We predict active speakers at frame level using this
model. These models essentially predict the bounding box of the
active speaker faces. To get the person-id for the predicted bound-
ing box, we use faces of the actors and tracking (ByteTrack) infor-
mation to associate the predicted bounding box with person-id.

For experiments related to Audio-based speaker diariza-
tion(pyannote) we rely on the open-source python library for
speaker diarization called pyannote-audio. We used the official pre-
trained (as described in section 4.1.2) Speaker Diarization pipeline
from pyannote available on Hugging-Face.

We take three 10 second audio samples of each of the 5 speakers
in the OSD for KNN algorithm. For a given video, we take sliding
window approach with window length of 0.8 second and a stride
of 0.4 second. For each segment, we predict the speaker by KNN
search. We take top-3 nearest neighbours based on the cosine sim-
ilarity score and use majority voting strategy to get the speaker for
the segment. We experimented with different k values and found
optimal performance for k = 3.

We evaluate our audio-based speaker detection approach in the
task of video editing. For this, we take two existing editing al-
gorithms namely speaker-based greedy editing(SGE) and speaker-
guided optimization editing(SOE).

In SGE, we use minimum shot duration(l) of 1.5 second and
silence duration(L) of 2 second.

In SOE, we use speaker potential function S(sx
t ) [2] in opti-

mization framework [3]. We constrain our optimization framework
with a minimum shot duration (l) of 1.5 second. In the scenarios
where there is silence or no clear speaker, similar to SGE approach
speaker potential ranks master shot a higher cost and a lower cost
for the other shots.

5.1. Evaluation metrics

Frame-level speaker accuracy for a video is calculated by dividing
the number of frames with correct speaker prediction by the total
number of frames with voice activity.

Frame-level Editing accuracy is calculated by dividing the num-
ber of frames that have a correct match with ground truth in terms of
the subjects shown in the video edit by the total number of frames
in the video.

6. Results and Discussions:

We conducted experiments using three different methods to de-
tect speakers and report metrics for each of these methods in Ta-
ble 1. We assessed the accuracy of TalkNet, Pyannote, and KNN
approaches for the full video and 9 segments of the video. We
chose these 9 segments based on varying visual and acoustic con-
ditions. Specifically, we selected segments that contained non-
speech sounds such as buzzers, bell rings, and clapping, as well
as instances of overlapping speech, and instances where all actors’
speech was covered.

© 2023 The Authors.
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Based on the data presented in Table 1, it can be concluded that
the KNN method outperforms both Pyannote and TalkNet. One rea-
son for this could be that KNN uses audio samples of the speakers
as extra input for predictions, while Pyannote doesn’t use any extra
data. TalkNet had the lowest performance, likely due to the com-
plex visual conditions present in the videos such as face occlusions
and low resolution. The performance of TalkNet varied depending
on the camera views, indicating that its performance is influenced
by visual features that change with different camera angles.

We conducted video editing experiments on the OSD dataset us-
ing speaker information obtained from ground truth annotations as
well as speaker predictions obtained from the KNN and TalkNet
methods. We use videos from one camera view for these exper-
iments. Table 2 presents the frame-level editing accuracy results
for the greedy and optimization approaches across 9 segments. The
data in Table 2 suggests that the input speaker information plays
a significant role in video editing and that the speaker is the most
important factor in the video editing decision-making process. Ac-
cording to the metrics, approximately 70-80% of the frames in
an edited video contain the speaker. Our results indicate that the
speaker optimization approach outperforms the greedy approach.
Furthermore, there is a visible correlation between speaker accu-
racy and editing accuracy.

7. Conclusions

This study evaluates various ASD methods and presents a sim-
ple audio-based approach that can outperform existing methods in
video settings, such as those found in the OSD dataset. The KNN
approach outperforms both diarization and audio-visual ASD meth-
ods. This study also emphasizes the importance of speakers in the
video editing process and assesses the effectiveness of different
ASD models in this task. Our experiments demonstrate that speaker
information significantly influences video editing output. Our pro-
posed approach requires audio samples and actors’ face images as
additional inputs for predicting and tracking the active speaker. We
believe that audio samples and face images of actors are often avail-
able before the editing process. A potential future direction would
be to investigate other factors that affect the video editing task with
the goal of achieving fully automated video editing and developing
robust ASD models that can perform well in various video settings,
thereby improving the task of video editing.
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