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Figure 1: Hybrid scouting workflow and system output. L to R: 1) traditional scouting on location; 2) virtual scouting using tracked cameras
and 3D models; 3) reference film image examples courtesy of [SKSB21]; 4) system output showing automatic staging when tasked with
imitating visual features of the previous column

Abstract

We introduce a system that analyses film content to provide expert camera pose recommendations to cinematographers, so they
can rapidly experiment with shots in a virtual space. Shot experimentation to produce storyboards is a crucial preparation step
prior to filming, with the time and skill required to create expert storyboards high. Additionally, the convergence between the
desired aesthetic and what the physical environment allows is traditionally explored by scouting on location, which can also be
costly. We hypothesise that autonomous scouting in the virtual world by moving cameras, actors and lights to achieve specific
composition traits is efficient and supports creativity. Our system automates aspects of scouting, storyboarding, and staging
without being directed by limiting rule-based cinematography techniques, and instead by data-driven unsupervised clustering.

CCS Concepts
• Computing methodologies → Image processing; Computational photography; • Human-centered computing → Human
computer interaction (HCI);

1. Introduction

Film pre-production develops a director’s vision of a script. The
process is creative with high requirements for time, skill and re-
sources. A critical deliverable from this stage is a storyboard, which
supports planning for efficient filming on shooting days. Creating a
storyboard can be summarised into two main tasks:

Conceiving shots, whereby the professional team imagine how
each section of script will translate into the 2D frame captured.
Experience, imagination, script, and previous film content may all
contribute to the shot decision.

Realising a storyboard to document the aforementioned con-

ceived shot. Traditionally crafted by hand on paper, technologi-
cal advances have provided the ability to transfer or create story-
boards using virtual environments. They allow quick, low cost ex-
perimentation without the need to physically be on location, and
offer greater realism than hand drawn sketches. However, the task
of placing virtual cameras, actors and lights is currently predomi-
nantly manual.

These two tasks present a combined opportunity for automation.
Firstly, for an appropriate shot-type to be recommended, and sec-
ondly, for that to be realised in the virtual environment by solving
for camera pose. Our hypothesis is that stylised and professional-
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level camera poses can be recommended to cinematographers in the
virtual space, as an aid in the shot-planning stage. We believe that
imitating shot composition from previous film content is a valid
and robust prior which can be guided from sources appropriate to
the story. This will support the creativity of film making without
constraining cinematographers, enabling a convenient and guided
method for explore environments to produce shots in desired style.

1.1. Contributions

Aligned with the tasks of conceiving shots and realising a story-
board, as described above, our contributions are as follows:

1. A system that analyses existing film content to identify image
features characteristic of shot styles using clustering.

2. Unreal Engine tools to enable the optimisation of camera, actor,
and light positions according to the above.

Through a user study we show user preference of system parame-
ters, demonstrating a step towards autonomous storyboard creation.

2. Background

Virtual environments offer the flexibility to develop ideas without
the need to travel to and manipulate physical environments. They
can offer enhanced visualisations for planning real shoots, and ac-
tual footage for a full computer generated imagery (CGI) movie or
game. Recent surveys [CON08; Ron21] discussed the history and
advancements in virtual cinematography. The latter splits film mak-
ing into decoupage (the choice of camera shots), mise-en-scene (the
staging of events in front of the camera), and montage (the editing
process), and how researchers have tackled each aspect in the appli-
cation of games and virtual cinematography. Several complete au-
tonomous cinematography environments have been proposed, inte-
grating virtual environments with cinematographic control, as dis-
cussed below. Some have used Finite State Machines, geometric
limits, and hard cinematographic rules to produce media based on
machine readable scene descriptions as input [HCS96]. Refining
the trajectories to mimic real-life camera hardware like rails has
been considered [HAB17].

Virtual pose solvers with textual direction allow a director to
describe a shot using the language of cinematography with which
they are familiar e.g. close-up, medium shot, dolly, zoom [MBC14;
Gal15; GR17; RGBM22; LCL18]. This requires upstream transla-
tion of the script into shot descriptions, either manual or automatic.

Pose solvers by feature imitation depend on the data and visual
features they are imitating. They may analyse camera motion from
real or virtual shots [SDM*14] to mimic a specific movies style.
This idea may be extended to also extracting the poses of actors,
such that relative offsets between actor(s) and camera are recreated
[JWW*20]. Goals based on camera movement, framing and head
orientation have been demonstrated [YSP*21] to translate well into
a virtual environment.

Virtual camera fine-motion controllers have been developed
to offer fine-grain motion control of the cameras include imitat-
ing camera shake [AMJ*20; KRE*14] and subject zoom via im-
age cropping [WAE*20]. Whilst these can improve realism, they
rely on an rough established relationship between camera and actor
within the scene, or else be applied to existing camera trajectories.

Many optimization methods have been applied to the task of

exploring possible camera poses to minimise some objective. In
particular, particle swarm optimization (PSO) [KE95] has been
demonstrated to improve six degrees of freedom (DoF) and lens
field of view (FoV) solvers when compared against grid search
methods [BDER08]. They can incorporate cinematographic prin-
ciples such as rule of thirds, object position, colour palette [BR14],
and provide the ability to solve temporal trajectories for moving
cameras [PHPU16]. Neural techniques have been investigated to
propose cut scenes in the style of a nominated director [EG22] af-
ter being trained on hand-annotated clips from those directors, and
through the use of Reinforcement Learning (RL) [YYWR22].

Automatic storyboard creation considers the workflow of pre-
visualization. While preexisting tool may inconveniently realise the
desired outcome new tools should benefit from a user-centric work-
flow design [MVWM19]. For the task of building a sequential sto-
ryboard from a script Anyi et al. [AXY*23] has investigated a pro-
fessional shot discriminator, that ranks shots based on their quality.
With ResNet-50 as the basis for analysing individual frames the
model is trained to discriminate between shots created by profes-
sionals and random shots, on the principle the random shots will be
of low quality. Their system uses a camera script (a textual descrip-
tion of camera motion) to propose shots as renders from a game
environment. The discriminator then identifies the best proposals.

To expand on the state of the art we combine elements from
Barry et al. [BR14] and Anyi et al. [AXY*23] with unsuper-
vised clustering to generate stylistic targets for camera poses. Our
novel contribution is to use unsupervised shot classification to drive
composition-based virtual camera pose solvers (an autonomous vir-
tual ’scouting’ process) in order to provide creative, efficient and
convenient storyboard recommendations to new filming tasks.

3. Methodology

Below describes firstly the constraints identified to manage project
scope, followed by requirements. This is followed by a step by step
description of our approach.

Constraints 1) All examples in related work mentioned in sec-
tion 2 consider the framing of humans (real, or virtual models) as
the main subject. To back this decision, a set of Hollywood films
was analysed for presence of face. Figure 2 shows the proportion
of frames with various numbers of faces, throughout a distribution
of 213 films. The high proportion of zero faces detected is likely
due to false negative face detector results due to scale, codec ar-
tifact, or motion blur within the frame. We therefore focused on
solving for images with only 1 actor in frame. This also supported
a step-wise approach, in that starting with the simple configuration
of a single actor simplifies the solving logic; future work may en-
able additional actor placement. As such, face detection becomes
an important feature in our work, developed as described in sec-
tion 3.1. 2) Only consider the analysis of high-quality film - e.g.
Hollywood grade films, and not user-generated content from social
media. This is to ensure learnt priors are guided by content more
likely to be well produced, and provides a more likely recognisable
reference to users for scenarios where style from a specific film is
desired. 3) Analysed media was not required to be in native reso-
lution, since higher resolutions (full HD or 4K) proved slower to
analyse without clear benefit.

Requirements defined to achieve the goals set out in section 1.1,
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Figure 2: Distribution of number of faces detected in every 10th
frame of 213 films. The high proportion of frames with zero faces
is suspected to be face detector failures on small scale, codec com-
pressed, or motion blurred frames.

were as follows: 1) the ability to extract relevant image features
plus a method of summarising these feature using clusters; 2) the
ability to externally control the virtual environment camera, actors
and lights, plus enable autonomous exploration of those elements
when tasked with an image-feature based goal; 3) wrap the above
components into a user interface. The development of this system
is described in five stages as follows:

3.1. Image Analysis

Many image features could be analysed, but which ones? Maybe
the most complete set of features are those which cinematographers
consider when planning and executing shots. Clearly subject fram-
ing is important since without the subject in frame, the intent of
the shot is lost. Many other elements are considered, and are the
subject of extensive analysis in the field of film studies which are
not covered here. Another set of features are ones which have been
shown to be related to induced emotion in viewers. According to
existing work in image feature analysis as an affective cue in film,
table 1 shows the features most associated with providing affective
emotion. Although these cannot be assumed to correlate to how cin-
ematographic style is encoded within film, it nonetheless provides
a guide to important features when considering image composition.
Yet another set could be features shown to show promise when
applied to clustering video, [MZBB16], or image Content-Based
Image Retrieval (CBIR) tasks whereby rapid and robust compar-
ison is required [SC97; CWK03]. Considering these options and
figure 2, it was decided to progress with face, colour, and light-
ing key (brightness) analysis, with acknowledgment that additional
features would present interesting lines of research for this work.
The following describes the implementation of such analysis tools.

Face: The requirements for a face detector appropriate for this
application required speed, accuracy on large and small faces, and
the ability to feed downstream face angle detection models. Sev-
eral models were evaluated for speed and accuracy. Inference dura-
tions for single face detection on 960× 540. images were discov-
ered as follows: MTCNN (60mS), RetinaFace ResNet-50 (33mS),
RetinaFace MobileNet (28mS), YOLOv5 nano (18mS), MediaPipe

Visual Feature Rank
Camera movement 1
Colour energy, actor movement 2
Brightness, shot length 3
Shot scale, colour separation 4
Lighting key, shot coherence 5
Rule of thirds , focus, tonal range, horizon position,
nose / head room, background clutter, face angle,
lens

6

Vanishing point, blocking, texture map, aerial diffu-
sion, line distribution

not
scored

Table 1: Summed and ranked visual features for affective com-
puting, from [XJLD08; CL13; LBS*20; TLT20; RSS05; BSB*19;
Wan06; Kan03; HX05]

Figure 3: Scatter plots showing distribution of face centre hori-
zontal pixel position in frame (x) against face yaw angle degrees
(y) throughout 2 films: (L) Ouija: Origin of Evil and (R) Murder on
the Orient Express

BlazeFace (21mS for 16 images). Ultimately a batched and multi-
threaded YOLOv5 model was used, giving a good balance of per-
formance speed and accuracy on small faces, resulting in 16 images
being inferred in 86mS. Angle: Face angle estimation (yaw, pitch,
roll) was implemented using an FSA-Net [YCLC19] model, utilis-
ing the bounding box and keypoints detected in the YOLOv5 de-
tector. Colour: Basic statistics and histograms were gathered from
RGB and HSV colour space of both face and background elements.
Downsampling and masking were employed for speed improve-
ments. An estimated ’face+body’ mask was implemented to avoid
corrupting background measurements with the body of an actor.

3.2. Unsupervised Clustering

Following the desire to not require human annotation and guidance
for style identification, an unsupervised approach was taken with
the aim of identifying characteristic shot types within the source
material. The image analysis previously described was applied to
every 10th frame from 213 movies. The following work describes
the exploration of that feature data-set in an unsupervised fashion.

General distributions of individual films analysed with par-
ticular face features demonstrated that distributions of individual
features can be unique between films, as in figure 3. This holds
promise for style imitation in new filming tasks, but these distribu-
tions alone do not tie correlations between image features or allow
individual shots to be represented.

User defined feature filters may offer the ability to drill down
into finer resolution of shot types, and after implementing a simple
user interface it became apparent the limitations of single feature
distribution analysis still apply. Additionally, this process required
additional human intervention, and also knowledge about what and
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how to apply the filters for interesting results, both of which are not
aligned with the goal of reducing burden on the user.

Multi variate clustering was considered to accommodate mul-
tiple input features, separate out unique clusters, and probabilisti-
cally synthesise parameters according to the discovered clusters to
be used in downstream pose solving tasks as in section 3.4. By con-
sidering various types of clustering from [Xu15] ,the distribution
/ model based method of multi-variate Gaussian Mixture Model
(GMM) [DHS73] analysis was implemented , such that a nomi-
nated subset of features could be analysed for the purpose of cluster
representation. With the decision about which features to analyse in
the first place, the decision about which features to present to GMM
also needed consideration, which will be discussed in section 3.4.

For the purposes of development however, 5 scalar features rel-
evant to face pose (x, y, height and pan and yaw rotations) were
used to demonstrate the complete GMM process (see figure 4), as
applied to a single film. GMMs with varying number of compo-
nents (1,2,3,5,8,40) were produced. The Bayesian Information Cri-
terion (BIC) and Akaike Information Criterion (AIC) calculations
provided guidance for optimum component count. Increasing com-
ponent count eventually provides diminishing returns, due to the
compute cost of calculating multiple GMMs , and potential over-
fitting of the data. Too few components may group clusters which
otherwise be useful to separate.

Once a GMM was constructed, it was possible to synthesise
multi dimensional data by either sampling from the entire GMM,
or by sampling from a nominated single Gaussian component. The
latter provided the ability for parameters representing individual
shot-types to be generated.

Several component importance metrics were calculated, includ-
ing component weight, number of original data points covered by
the component and a variance-normalised point count. Addition-
ally, inspired by [HO07] and [JECJ07], a pair-wise distance met-
ric between all multi-variate Gaussian components using a Kull-
back–Leibler divergence (KL) was calculated. The resulting con-
fusion matrix column and row means could be used as a guide for
particularly separate clusters.

The result of GMM analysis was twofold. Firstly as already dis-
cussed, sampled data and component parameters were stored for
use later in the downstream pose solver as described in 3.4. Sec-
ondly, the user was presented with a representations of the clusters
in either the form of still images representing maximum probablity
for each GMM component (i.e. the ’best’ frame for each compo-
nent), or as a time-series (figure 4), allowing the user to understand
how clustered shot-types were used throughout the duration of a
film section. It should be noted these frames were only of shots
containing 1 face, and at a frame skip rate of 30 frames, so only
present a subset of the movie throughout time.

Discussed so far was the application of fitting a GMM to mul-
tivariate scalar parameters. As mentioned, some feature analysis
produces a histogram per frame (e.g. colour), and although each of
the bins (32) could be presented as a scalar dimension to the GMM
fitting process, we were conscious of the increased computation
and stability risk with this approach. As such, a nested GMM ap-
proach was taken to represent colour histograms, in a technique to
reduce dimensionality down in a 2 step process. Each major GMM

Streams retrieved
# cams fps 1 2 4 8 16 32
1 80 53 (17)
2 80 54 (17) 51 (17)
4 52 87 (17) 89 (17) 85 (17)
8 30 137 (17) 134 (17) 136 (17) 157 (32)
16 17 197 (16) 217 (16) 218 (16) 250 (32) 316 (62)
32 8.5 511 (32) 496 (60) 650 (130)

Table 2: Total duration in mS for moving cameras and retrieving
the new images (parenthesis) from Unreal Engine, using the HTTP
API and Spout plugin

component was instead presented with mean and variance scalars
representing 3 Gaussian distributions for each colour channel, such
that an original colour distribution could be re-sythesised in the op-
timization stage to optimise against. This offered a convenient rep-
resentation (3×2×3) of the otherwise high dimensional ( 32×3)
colour histograms for colour channels.

3.3. Pose Control

To build a system in which exploration can be automated, the fol-
lowing objectives were set: a) - use a well-known 3D virtual envi-
ronment that allows potential for future projects to be easily inte-
grated, b) - enable external control of key components in the scene
- camera, actors and lighting parameters, c) - provide efficient con-
trol and image I/O, d) - allow solving routines to be integrated into
the external control component. Each was approached as follows:

Considering previous work and available applications, Unreal
Engine 4 (UE4) was selected - being well supported, allowing mul-
tiple cameras and timeline control, external API control, and can
render camera images to external programs. It is also familiar in
the virtual production community, lending itself well to workflow
integration. A camera control layer has been implemented for Un-
real Engine in “CineAirSim” [PCM20], however greater flexibility
was required for our task. The communication mechanisms imple-
mented were the UE4 API which includes HTTP and websocket
control of engine parameters, and a Spout [SPO23; OFF23] camera
renderer plugin which allows shared GPU memory access to cam-
era images from UE4 to Python. All camera translation, rotation
and intrinsic parameters of focal length, aperture and focus distance
were controlled through Python. Control of actor and lighting po-
sition and intensity was also implemented. Multiple cameras were
setup in UE4 which gave rise to aggregate speed improvements as
show in table 2, realised through a single batch camera move API
call, and multiple Spout receivers. Due to the nondeterministic tim-
ing of the UE4 HTTP API, it was necessary to implement a water-
mark system for positive validation that the image retrieved came
from correct camera in correct position.

3.4. Pose Optimization

Once external control over the environment was proven to be ro-
bust to fast consecutive operation, the next step was to implement
optimized based convergence of pose. For this, several custom im-
plementations were made for the key components as follows:

The objective function in this application was set to move ob-
jects as per new co-ordinate parameters, receive and analyse the
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Figure 4: (Upper) System architecture for multivariate GMM clustering and probability assignment from source film. GMM component sam-
pling provides characteristic shot-type parameters which are used downstream in the virtual pose solving process. (Lower) shows sampled
component probabilities through time from film Why Him? to visualise shot type progression. This example shows a 5 component GMM, fit
to 6 face feature (5 for position and angle, 1 for brightness)

new images according to nominated features, perform some com-
parison to the parameter goals, and return a combined loss score for
that iteration. Since the system was based on a multi-camera setup,
the optimization function was designed to allow multiple pose pa-
rameters to be proposed, and return back multiple loss scores. The
objective function made use of the control methods already de-
scribed in section 3.3 to move cameras, actors and lights.

The loss function , the next key component considered, needed
to perform the image analysis (as per 3.1) of each new camera pose,
compare the extracted feature parameters against the goal parame-
ters, and combine to produce a single scalar loss value for each im-
age. In general, the loss function could be setup to test for any nom-
inated set of image features and weights , and compared against a
reference set of parameters covering the same set of features. Com-
bining individual feature scores accorded to either Linf, L1 or L2
norms. In the case where features could not be detected (like a face
in the frame), worse-case values were used in default for that fea-
ture. Figure 5 shows some feature and weight settings, as editable
by the user for 2 of the optimization stages which are described in
the next section.

Optimization methods. Recalling the set of features analysed
being face, colour and brightness, the optimization was initially
tasked with moving cameras around a fixed actor, in order to frame
the faces as per the goal parameters. Initialization poses were cal-
culated to have cameras at least pointing in the general direction
of the actor, since with no face present on-screen, the optimizer
has not hint about which direction should result in a lower loss
score (e.g. to find the face again). Initially after testing minimiza-
tion techniques (Nelder-Mead, BFGS, Powell, Newton-CG), it was
discovered these suffered from sequentially searching each enabled
camera dimensions, often failing to converge on a believable result.
As such and as inspired by previous work [BDER08], a Particle
Swarm Optimization approach was taken. This provided good cov-
erage within the allowable search bounds, generally reducing a 48
particle swarm variance after 40 iterations using 8 virtual cameras,

Figure 5: VACE loss function feature adjustment user interface.
Features can be muted, solo’d, and have their weights adjusted,
affecting the loss fucntion summation.

and providing believable results for the final camera pose image.
Experimentation in adding more features to solve against like back-
ground colour highlighted the problem with a single static actor, in
that it provided only a limited set of possible backgrounds. There-
fore it was proposed that additional optimization steps could be
used after the initial camera-to-actor (face framing) pose solving.

Multi-stage optimization provided a solution to the need of op-
timizing many features which otherwise often failed to converge at
all, or within reasonable number of iterations. A 3-step PSO was
implemented. The first solved face position and angle by only ad-
justing camera 6DoF pose with the target actor static as already
mentioned. The second solved against background colour parame-
ters, with the camera able to search in azimuth (x,y,Pan), but now
moving the actor such that the previous relative standoff with re-
spect to the camera was maintained. These first two steps could
be considered the scouting part of the system, whereby the envi-
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Figure 6: VACE particle parameter convergence - 48 particles, 40
iterations and solving for 3 camera dimensions. L to R: X, Y, Yaw
angle. Optimised against background rgb and v mean pixel values

ronment is searched without prior knowledge or annotation. The
third optimization was to control lighting intensity of a light at a
static offset to the actor. Each PSO was controlled by a set of nom-
inated image features and weights, along with lower / upper con-
trol bounds and a loss norm function. Initially all PSO stages ac-
cumulated feature scores in the default L2 norm fashion. However,
experimentation showed that an L2 norm would produce unsatis-
factory results for rgb colour histogram feature matching. Often,
a beige background would score better than a solid block colour
background. In order to alleviate this, the Linf norm was selected
for the middle stage PSO solver, and this produced more credible
results for colour histogram matching. This resulted in experimen-
tal best use of L2 for face, Linf for BG colour, L2 for lighting. Figure
6 shows example particle convergence when tasked with optimiz-
ing for 4 background colour features by adjusting 3 control param-
eters of camera position and yaw in the second PSO.

Experimenting with PSO hyperparameters of c1, c2, and w, (cog-
nitive, social, and inertia weights) confirmed the default selection
of 0.5, 0.3, and 0.9 respectively performed the best for all steps
in that in the majority of examples, the position could be closely
aligned given at least 30 iterations (5 for step 3) . Both Local-best
and Global-best methods were tested, with Global-best perform-
ing faster convergence. For step 2 (background), In fact, the default
GlobalBest PSO parameters worked best given enough iterations
(at least 30). It can be observed that there was generally less con-
vergence between particles in step b, meaning although a cluster of
particles did tend towards a good position, at least half of the other
particles continued searching. Step 3 (lighting) could converge with
the least number of iterations, generally 5 or less. Solver functional-
ity as described above was implemented in software named Virtual
Autonomous Cinematography Environment (VACE), and by which
the user could interact using a user interface as developed below.

3.5. User Interface

The VACE system requires a goal for the pose solver to solve
against. This section describes the step-wise approach taken to user
interaction for setting this goal.

User defined image imitation was implemented first. Image
feature parameters were extracted from a reference image nomi-
nated by the user, and VACE solves against those parameters. Fea-
ture selection and weights were controlled as per figure 5. The out-
put quality of this method was observed in an online survey as de-
scribed in 4, to understand how VACE loss and iteration hyper-
parameters performed. This method of interaction provided con-
fidence that solving as per feature parameters could be achieved.
Automatic GMM component sampling started to bring together
the concept of autonomous unsupervised virtual scouting, in that

the previously analysed film clusters are now used as goal parame-
ters for the VACE solver. In this case, previously computed (section
3.2) feature clusters are provided as input to the VACE solver via
samples taken from each of the multivariate Gaussian mean and
covariance matrices. Each stage of the optimization (actor position,
background, and lighting) required its own set of Gaussian sampled
parameters appropriate to that stage (e.g. face features for stage 1,
background features for stage 2, and face brightness for stage 3).
GMM component nomination could be user defined to achieve a
specific shot type, or all components could be solved sequentially.
The latter option gave the user a full representation of film-specific
characteristic shot-types, but applied to the environment and actors
defined in the 3D space within UE4.

All the above modes of operation could be run through a com-
mand line interface to support batch processing of large datasets,
or with the GUI presented to the user for manual control. The sub-
sequent steps describe how VACE output was presented as recom-
mendations for a storyboard creation task.

Storyboard creation . The above components provided a
method for the virtual camera, actor and light to be adjusted in the
virtual space via VACE as per the desired goal. The output of VACE
was pose parameters and still images representing its convergence
on the target parameters. As such, a user interface was developed
with the aim of allowing a user to select a series of still camera
shots into a storyboard. Shot selection was either by pre-computed
VACE images, or by a live Spout connected virtual camera feed
from the UE4 environment. The purpose was to allow the user to
complete a short scouting and shot planning task, and to experiment
with recommended shots derived from imitating images, films, or
clustered shot-types from VACE, and from completely manually
controlled cameras in UE4. Hybrid motion tracked and VACE
recommendation allowed further experimentation that aimed to
provide a more natural , familiar cinematographic method of man-
ual exploration by holding and moving the motion-tracked camera,
rather than interacting with mouse and keyboard. This hybrid ap-
proach aimed to combine the best of both worlds, and approach the
contribution defined in 1.1 of supporting creativity and efficiency,
which may otherwise be hampered if the user was only able to man-
ually adjust virtual cameras with traditional peripherals of mouse
and keyboard. A gamepad was also provided, to enable quicker
movement within the environment, as the tracked camera only al-
lowed a limited 6DoF, bounded by the physical room dimensions.

4. Evaluation

We provide evidence on the first claim put in 1, that professional
level camera poses can be realised using the system developed in
this paper. Here, we test this hypothesis by presenting output im-
ages to lay people, and asking their preference in an image im-
itation scenario. An online user study was conducted in order to
measure how different optimization parameters performed. A set
of 23 reference images was selected from [SKSB21], and provided
as input to the VACE system, which was primed with a 3D envi-
ronment, actor, and a single light source. The system was tasked
with imitating the reference image composition through PSO, and
output images recorded for 4 different configurations. The survey
presented a random reference image and 4 candidate VACE images.
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Figure 7: (upper) User preference for VACE processing method,
when tasked with imitating a single shot from a movie. Coloured by
participant. (lower) The study interface.

The user was asked to nominate the most closely matching VACE
image to the reference image, with the test repeating 30 times
for each participant. See figure 7, showing indication from users
that methods including lighting adjustment are preferred, however
none out of those 3 preferred methods particularly out perform the
rest. Qualitative feedback from a questionnaire returned positive
results for face positions (70% respondents indicating most images
were mostly the same), but indicated room for improvement for
background colour and lighting (80% indicating most images were
sometimes the same) as the reference image. Out of the respondents
experience levels were recorded as 3 ‘occasionally took photos’, 4
‘experienced amateur’, 1 ‘professional’, and 2 ‘never took photos’.

Shortcomings, some of which may be tackled in future work are
identified as follows: The validation of clustering as a method of ex-
tracting characteristic shot types from film, when calculated in the
method described in section 3.2. This needs verification through
studies that identify style or characteristics of generated shots in
the system. The ability for style to be correctly imitated when com-
pared to other sources (e.g. compare clusters extracted from one
film / genre, to clusters extracted from another film / genre), or com-
pare extracted clusters from one film / genre against a large superset
of clusters that covers all films analysed in the dataset. The ability to
alter how ’unique’ shot types are identified or recommended to the
user - for instance how should the user know that some shot-type
clusters are the ’generic’ ones like RoT, and how some shot-types
are particularly unique for that film? Consideration for a collabo-
rative approach is given, in that we hypothesise that tools like the
ones developed in this paper act as one part in the human work-
flow of film creation. However, the exact integration details of such

tools into the workflow needs to be evaluated, and their ’owner-
ship’ of particular sub-tasks needs to evaluated for their merit or
hinderance. We also desire to test the utility of tools like this in a
variety of settings - for novice film-makers who may benefit from
guidance, and for professionals who may require time-saving in-
struments in order to be more effective. Quality improvements are
desired, and acknowledgement is given to the questionnaire feed-
back that colour and lighting do not score as well as face positions.
From this, we believe additional features will help to achieve better
imitation. Also, 2 main components of cinematography are omitted
from this work, firstly the ability to consider dynamic environments
of actor and camera movement, and secondly the ability to consider
multiple actors in frame, or at the least in an over-the-shoulder type
shot which is commonly used for conversations. Editing between
shots is not considered, and although a requirement in subsequent
film-making steps, this body of work does not expect to tackle that
problem. Previous research has approached this problem.

Regarding the claim that recommended poses driven from film
analysis provides efficient, creative and appropriate images for sto-
ryboard creation — this work is yet to be completed, but will test
the utility of producing a storyboard using the tools in section 3.5.

5. Conclusion

This work demonstrates automating recommendations for the task
of creating storyboards, with elements of location scouting, for
film pre-production. System development and evaluation has been
discussed, which currently demonstrates unsupervised guidance of
virtual camera pose. A small scale user study of the output im-
ages shows generally good levels of compositional similarity for
face positioning, with further work required to improve colour and
brightness matching. Other features are also expected to be intro-
duced for future work. Proposals for hybrid workflows that com-
bine both autonomous recommendations and a tactile tracked cam-
eras have been suggested, as future work which will extend the cur-
rent proof of concept towards a valuable industry tool. Additional
investigation including ablation studies is also expected to improve
understanding of system component performance.
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