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Abstract
When watching the same visual stimulus, humans can exhibit a wide range of gaze behaviors. These variations can be caused by
bottom-up factors (i.e. features of the stimulus itself) or top-down factors (i.e. characteristics of the observers). Inter-observer
visual congruency is a measure of this range. Moreover, it has been shown that cinematic techniques, such as camera motion
or shot editing, have a significant impact on this measure [SM13]. In this work, we first propose a metric for measuring IOC
in videos, taking into account the dynamic nature of the stimuli. Then, we propose a model for predicting inter-observer visual
congruency in the context of feature films, by using high-level cinematic annotation as prior information in a deep learning
framework.

CCS Concepts
• Computing methodologies → Interest point and salient region detections;

1. Introduction

Predicting human viewing behavior, in the sense of gaze patterns
or visual saliency for instance, is an important topic in the com-
puter vision community. However, visual behavior is not always
consistent between observers, either because of top-down factors
(for instance, observers with a previous knowledge of the stim-
uli will exhibit different gaze patterns [DMGB10]), or bottom-up
characteristics. For example, people will tend to exhibit very sim-
ilar behaviors when viewing a scene containing a single salient
object, while cluttered scenes, or scenes lacking strong visual at-
tractors will induce more diversity in eye fixation locations. Differ-
ences in ages, or cultural background can also be found in visual
attention data [LCL∗17, CBN05]. Thus, understanding how differ-
ent observers will react to a given stimulus is key in understanding
the way we interact visually with images.

The similarity, or dissimilarity between visual trajectories among
observers is referred as attentional synchrony, and metrics quanti-
fying this synchrony are commonly called inter-observer congru-
ency (IOC) metrics. Such metrics have proven very useful in a
whole variety of applications, such as image ranking, quality as-
sessment, or even visual saliency: indeed, IOC has been shown to
provide an upper-bound on the performances of models predicting
the locations of eye fixations. However, this measure in itself has
received way less attention than, for instance, visual saliency pre-
diction. Le Meur et. al. [LBR11] offered a first image-processing
approach, where they studied the influence of several image fea-
tures, such as the depth of field or the image complexity, on IOC

scores. Following this work, Rahman and Bruce [RB16] explored
more image characteristics, coupled with top-down features. They
proposed a predictive model of IOC based on both those feature
sets, as well as information yielded by the predictions of visual
saliency models. Bruckert et. al. [BLCL19] proposed an approach
based on deep learning, relying on deep convolution networks to
extract features, coupled with a shallow regression network. More
recently, Yue et. al. [YLZ∗21] proposed a model for predicting IOC
in the context of video, relying on a two-stream deep learning ar-
chitecture.

In the context of movies, attentional synchrony has also been
studied, from a more cognitive point of view. Dorr et. al. pointed
out several differences in the variation of eye fixations and saccade
amplitudes when watching the same stimulus several times over
two days, and compared the synchrony observed on Hollywood
movies and natural scenes. Mital et. al. [MSHH11] showed that the
most predictive features for gaze clustering when viewing dynamic
stimuli were temporal and motion-related, like flicker or contrast
in motion. Smith and Mital [SM13] also studied the influence of
the viewing task on attentional synchrony, highlighting a signifi-
cant influence of it, but mostly after the first few fixations, which
were usually guided by the exogenous attention mechanisms.

In the following, we first describe how to compute a reliable and
suitable IOC score, inspired by visual saliency metrics, for dynamic
stimuli. We then propose a model dedicated to predict this score in
the context of feature films, by incorporating high-level priors using
cinematic annotations.
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2. Measuring inter-observer congruency

2.1. Previous metrics

A lot of methods have been proposed to describe the amount of
visual congruency among observers when viewing a stimulus. All
of those methods use different hypotheses about the distribution
of gaze patterns, but overall, these metrics are highly correlated to
one another [DMGB10]. Rajashekar et. al. [RCB04] used the av-
erage z-score between the individual human fixations and the over-
all fixation density, using Kullback-Lieber divergence as a metric.
Peters et. al. [PIIK05] used the normalized scanpath saliency met-
ric (NSS) to compare each individual gaze track to a global inter-
observer model, composed of the aggregation of individual saliency
heatmaps.

Sawahata et. al. [SKK∗08] used a criterion based on informa-
tion theory, the entropy of the fixation distribution, or more pre-
cisely, the entropy of a Gaussian mixture model (GMM) fitted on
the the gaze points divided into clusters based on the Bayesian in-
formation criterion (BIC). Similarly, Mital et. al. [MSHH11] used
GMMs, and more specifically the weighted covariance value, to
discriminate between "tightly and loosely clustered frames", i.e.
frames in which attentional synchrony is higher or lower. Smith and
Mital [SM13] also used these GMM clusters and their covariance,
expressed as the visual angle enclosing 68% of gaze points. Fi-
nally, several area-based methods have been proposed: for instance,
Goldstein et. al. [GWP07] computed the area of the best-fit bivari-
ate contour ellipse, whereas Breeden and Hanrahan [BH17] used
the area of the convex hull of the fixation points.

Finally, more saliency-inspired methods consist in comparing
the gaze tracks of a single observer to the joint distribution of
all the other observers. This leave-one-out approach was used by
Torralba et. al. [TCOH06] and Le Meur et. al. [LBR11], where
they use the rate of fixations falling in a saliency classifier, cre-
ated from a thresholded fixation distribution map, and Rahman and
Bruce [RPH14], where they compute the AUC score between the
individuals and the aggregated fixation distribution of all other ob-
servers.

2.2. Dynamic stimuli

Extending the measure of IOC to the spatio-temporal domain is
not as straight forward as it may seem. For instance, applying an
IOC measure on a frame-by-frame basis can be problematic, as
there might not be enough fixations to avoid a significant amount of
noise: indeed, in the case of cinematographic movies, each frame
will be displayed for around 42 milliseconds, while the average eye
fixation spans around a few hundred milliseconds, implying that
each frame will only display one or two fixations per observer.

More generally, designing an IOC measure for dynamic stim-
uli implies answering questions about what we actually want to
measure. For example, let us consider a sequence containing two
spatially separate salient locations A and B (a dialogue between
two characters, for instance), and two observers. If, during a short
time period, the first observer fixates location A first and location B
second, and the second observer does the opposite, both observers
will exhibit similar spatial gaze patterns, and only differ tempo-

rally. However, a frame-by-frame measure will (in the worst sce-
nario) treat the case as if the first observer only fixated location A
and the second only location B. We then argue that a well-designed
IOC metric should take into account the temporal continuity: two
non-simultaneous fixations at the same spatial location should be
considered as "close" based on the temporal dimension.

In order to address this issue, we propose a new approach to
compute an IOC measure in the spatio-temporal domain.

First, we define the spatio-temporal fixation density map for a
stimulus. For each frame, we compute the traditional fixation den-
sity map by convolving the binary fixation map with a Gaussian
kernel, which covariance is chosen so that it approximates the size
of the fovea. Figure 1 shows an example of this spatio-temporal
representation. Then, we stack those density map into a spatio-
temporal volume, and smooth it in the temporal dimension using
a Gaussian kernel, which variance is set to approximate 250 ms,
i.e. the average duration of a fixation. In the case of a 24 frames
per second cinematic stimuli, this amounts to 6 frames. Now, this
spatio-temporal map can be compared to ground truth fixations us-
ing the NSS metric on the whole volume:

NSS(S,F) =
1
N ∑

i
S̄iFi

where
1
N

= ∑
i

Fi and S̄ =
S−µ(Ŝ)

σ(S)

(1)

where N is the number of fixated voxels, S is the fixation density
volume, F is a spatio-temporal binary fixation map, i.e. a volume
where each voxel is either 1 if a fixation occurred at its location
and time, and 0 otherwise. The choice of the NSS metric in this
case comes straight forward, as it is way less time- and memory-
consuming than AUC metrics.

Figure 1: Example of spatio-temporal fixation density map on a
sequence of Big Fish (Tim Burton, 2004).

From there, we use the exact same leave-one-out approach than
the static case. A fixation density is computed for each group of
(No −1) observers, and compared using the NSS metric to the fix-
ations of the remaining observer. The scores are then averaged over
the observers to get a global IOC value. In order to track the evolu-
tion of attentional synchrony over time, we keep the global fixation
densities and fixation maps, and compute the NSS values over a
sliding time-window, which size can be chosen depending on the
context: a shorter time window (e.g. four or five frames) allows for
a finer-grained analysis, but is more sensitive to noise, for instance.

However, the main drawback of this method is its memory con-
sumption. Indeed, we need to store a volume of size H ×W × T
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(where H is the height of the frame, W the width and T the dura-
tion of the whole sequence) for each observer, which can quickly
become overwhelming when working with high-resolution stimuli
and (relatively) long movie sequences. In order to solve this issue,
we designed a simple, yet useful heuristic.

We only consider a sliding time-window of size t; for each group
of (No − 1) observers, we gather all their fixations during this pe-
riod, and report it on a 2D binary fixation map, which is then
smoothed into a fixation density. This map is then compared to
the binary fixation map of the remaining observer using the NSS
metric. The process is iterated and averaged over all the observers
to get an IOC score over the considered time frame. The duration
of the time window can be freely chosen, once again depending on
the context. In our analyses, we considered two window sizes: 5
frames for a fine-grain approach and 20 frames for a more general
view. In our previous dataset [BCLM22], we found a strong signif-
icant correlation between this heuristic and the memory expensive
approach (for time windows of 5 frames: r = 0.7912, p< 0.001; for
time windows of 20 frames: r = 0.8531, p < 0.001). From now on,
we will then only refer to this heuristic when we mention spatio-
temporal IOC.

3. Predicting IOC for cinematic stimuli

In this section, we propose a bottom-up model dedicated to pre-
dict inter-observer visual congruency on dynamic stimuli, and more
specifically on cinematic stimuli. For this purpose, we designed
a two-stream deep neural network, inspired by the design of the
ViNet saliency model [JYJ∗21].

3.1. Architecture

To design this model, we make the assumption that the features
that drive attention in videos and that are extracted in deep saliency
models should also play an important role into determining whether
or not a stimulus will induce high or low visual congruency. This
assumption was also made by Rahman and Bruce [RB16], with
their Histogram of Predicted Salience features, where they use a
stack of feature vectors extracted from several visual saliency mod-
els.

Our model is divided into three parts: (i) first, a two-stream en-
coder extracts features from the optical flow and the frames at dif-
ferent depths; (ii) then, similarly to the ViNet model [JYJ∗21],
these features are passed through 3D convolution layers and up-
sampling, mixing the different hierarchical features using skip con-
nections; (iii) finally, the resulting representation, alongside with
IOC priors based on the cinematographic characteristics, is passed
through fully connected layers to obtain an IOC value. The overall
architecture is shown on Figure 2.

Two-stream encoder : The encoder part is composed of two
S3D networks [XSH∗18], one for the spatial features, using a
stack of 32 consecutive frames as the input, and the other using
the same 32 stack with optical flow. Following the approach of
ViNet [JYJ∗21], for a frame at time t, the input is composed by the
frames Ft−32+1, ...,Ft and the optical flow maps Ot−32+1, ...,Ot .

The features are extracted at the end of the four convolution

blocks, and passed through skip connections to the decoder mod-
ule, at different hierarchical levels. For an input of shape [T ×C×
H×W ], where T is the time window (in our case, 32), C is the num-
ber of channels of the input (in our case, 3) and H and W are the
height and width of the considered frame, the four features vectors,
X1,X2,X3 and X4 have respective shapes of [192× 16× H

4 × W
4 ],

[480×16× H
8 × W

8 ], [832×8× H
16 ×

W
16 ] and [1024×4× H

32 ×
W
32 ].

Decoder module : The decoder module consists in a succession
of concatenations alongside the temporal axis, gathering the hier-
archical features from the two stream and the output of the previ-
ous upsampling layer, 3D convolution layers, and upsampling us-
ing trinlinear interpolation. This integration part is then followed by
three 3D convolution layers, to reduce the feature tensor to one in
the channel and temporal dimensions. The output features are then
flattened, batch-normalized and concatenated with IOC priors, be-
fore being passed through three dense layers (similarly to the static
IOC model) of size 1024, 256 and 1.

Cinematic IOC priors : In a previous work [BCLM22], we
showed that high-level cinematic information can significantly in-
fluence inter-observer visual congruency, and is most likely not
taken into account by the feature extractor. We then include five
prior values into the feature vector:

• A camera motion prior, which is the average IOC value for the
type of camera movement in the shot of the considered frame,

• A shot size prior, which is the average IOC value for the shot
size of the considered frame,

• A shot angle prior, which is the average IOC value for the shot
angle of the considered frame,

• The entropy of the flicker map of the considered frame,
• A cut prior, which is the average IOC value of frames within

the first 500 milliseconds following a cut if the frame is in this
situation, and the average IOC value of the other frames if not.

In their work, Mital et. al [MSHH11] showed that flicker, i.e.
the change in luminance over time, alongside with motion, is also
a strong predictor of gaze clustering. Since motion is already taken
into account by the optical flow stream, we include flicker by com-
puting the entropy of a flicker map: at time t, we consider frames
Ft−4, ...,Ft , and transfer them from RGB to the CIELAB color
space. We then compute the absolute difference of the frames lu-
minance values (Lt−4, ...,Lt ), and average it:

Flt =
1
N

N

∑
i=1

|Lt−i −Lt−i+1| (2)

Where Flt is the flicker map at time t and N is the number of suc-
cessive frames considered. In our case, we use N = 5, similarly
to Smith and Mital [SM13], in order to minimize the influence of
noise due to compression artifacts.

3.2. Training

3.2.1. Implementation details

The frames are first resized to [288 × 512], using letterboxing
if needed to respect the original aspect ratio of the frame. The
optical flow frames are processed using the same procedure as
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Figure 2: Architecture of the proposed dynamic IOC model

Xie et. al. [XSH∗18]: the optical flow is extracted using the TV-
L1 algorithm [ZPB07], the magnitude is truncated into [−20,20],
and the maps are then stored as 3-channels encoded JPEG files.

To process the frame Ft , the sequence Ft−32+1, ...,Ft is fed to
the model. If any of those frames fall before the first frame of the
clip, the first frame is just repeated the adequate amount of times.
In order to train the network, we select the 32-frames sequences in
a random order among all clips

The priors are computed based on available information; if no
editing annotation is provided, we take the average IOC value of
the whole dataset for each IOC prior.

The S3D encoder are initialized using weights pre-trained on
the Kinetics dataset [KCS∗17] on an action-recognition task, us-
ing both RGB frames and optical flow. We use the L2 norm as a
loss function, with the Adam optimizer, learning rate is initially set
at 10e−4, and the batch size is set at 4.

3.2.2. Training datasets

The model is first trained on the DHF1k dastaset [WSX∗]. Ground
truth IOC scores are computed based on the supplied scanpaths (us-
ing the 20-frames time window). The 500 first clips from the train-
ing set are used for training, and the remaining 100 are used for
validation, and for early stopping. While the Hollywood2 dataset
would have been useful to train on, as it features the type of clips
we are interested in, its limitations prevented us from using it. The

low number of free-viewing observers makes it difficult to get a re-
liable IOC score, and, while adding task-oriented data can be useful
for visual saliency, it induces too much of a bias for IOC prediction.

Then, we use 15 clips from our dataset to fine-tune the model
(12 for training, 3 for validation), using the IOC priors as we have
cinematographic annotations, holding out the 5 remaining clips for
testing purposes.

3.3. Results

We used three datasets to evaluate the model: the validation set of
DHF1k (100 clips), the 5 held out clips from our dataset, and the
dataset from Breeden and Hanrahan [BH17].

We observe a Pearson correlation coefficient score between the
predicted IOC values and the ground-truth of r = 0.691 (p < 10−5)
for the DHF1k dataset, r = 0.731 (p < 10−5) for Breeden’s dataset
and r = 0.755 (p < 10−5) for ours. These scores are much higher
than those obtained with static models [BLCL19,RB16], which can
be explained by the prominent role played by motion features on
IOC [MSHH11]. DHF1k results also seem to be lower than the
other, probably due to the absence of cinematographic priors and
annotations, that are used in Breeden’s and our dataset.

3.3.1. Ablation study

In order to evaluate how each part of the model contributes to the
overall performances, and especially how the cinematic priors have
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Dataset DHF1k [WSX∗19] Breeden [BH17] Ours
RGB-stream (no prior) 0.631 0.624 0.657
Flow-stream (no prior) 0.471 0.473 0.469
Two-stream+priors (1) 0.690 0.712 0.733
Two-stream+priors (2) 0.689 0.731 0.728
Two-stream+priors (3) 0.690 0.731 0.754
Two-stream+priors (4) 0.652 0.699 0.718
Two-stream+priors (5) 0.691 0.707 0.743

Full model 0.691 0.731 0.755

Table 1: Pearson correlation coefficient between predicted IOC scores and ground truth IOC for several models

an influence, we performed and ablation study, retraining differ-
ent settings of the model. First, we tried both branches (RGB and
Optical Flow) separated, without any priors. Then, we use the two
streams and all of the priors but one each time: the camera motion
prior (1), the shot size prior (2), the shot angle prior (3), the flicker
map entropy (4) and the cut prior (5). Results for each configuration
is shown in Table 1

As expected, on the DHF1k set, as there is no significant prior,
the correlation scores do not vary when removing priors, except
in configuration (4), where the entropy of the flicker map is re-
moved. The camera angle prior does not seem to have any impact
on the prediction, which is consistent with what we observed in
previous work [BCLM22], and can probably be removed. A small
improvement is seen when adding the optical flow stream to the
RGB stream. The relatively low value for this improvement can
be explained by the fact that the RGB-stream already extract at
least some motion features, because of its 3D-CNN feature extrac-
tor. Finally, overall, adding cinematographic high-level information
through these priors seems to be of interest for predicting inter-
observer visual congruency.

4. Discussion

In this work, we focused our attention on inter-observer visual con-
gruency, a measure of how similar gaze behaviors from different
observers are when they are watching the same stimulus. We pro-
posed a way to measure this phenomenon on dynamic stimuli, and
introduced a model to predict it on movie sequences.

While inter-observer congruency (or attentional synchrony) is
well known and studied by cognitive psychologists, we argue that
more attention should be payed to this measure in computer vision,
both from a modeling point of view and for the resulting applica-
tions. While its role as an upper bound of the performance of visual
attention models is well-known, it can also be used to constraint
visual saliency predictions: for instance, a predicted saliency map
exhibiting a lot of salient areas will probably be wrong if the IOC
is high (meaning that observers tend to look at the same place). In
this regard, predicting IOC can be used to give an estimation of
how "difficult" a saliency prediction will be, and serve as a likeli-
hood score.

It could also be interesting to evaluate the interest of this mea-
sure in the context of image quality assessment: a high degree of
visual congruency means that there might be a single strong visual

attractor on the image, and thus artifacts on other areas of the frame
could be overlooked.

From the perspective of filmmaking, knowing when viewers will
focus their attention in the same location is tremendously useful for
directors, as it allows them even more control on what the viewer
experiences, in order to convey their narrative content and messages
at best. For virtual cinematography and automated editing, this can
be used to constraint the choice of the cuts, for instance, depending
on the desired style.

References

[BCLM22] BRUCKERT A., CHRISTIE M., LE MEUR O.: Where to look
at the movies: Analyzing visual attention to understand movie editing.
Behavior Research Methods (2022), 1–20. 3, 5

[BH17] BREEDEN K., HANRAHAN P.: Gaze data for the analysis of
attention in feature films. ACM Transactions on Applied Perception 14,
4 (2017). doi:10.1145/3127588. 2, 4, 5

[BLCL19] BRUCKERT A., LAM Y. H., CHRISTIE M., LE MEUR O.:
Deep learning for inter-observer congruency prediction. In 2019 IEEE
International Conference on Image Processing (ICIP) (2019), pp. 3766–
3770. doi:10.1109/ICIP.2019.8803596. 1, 4

[CBN05] CHUA H. F., BOLAND J. E., NISBETT R. E.: Cultural vari-
ation in eye movements during scene perception. Proceedings of the
National Academy of Sciences 102, 35 (2005), 12629–12633. doi:
10.1073/pnas.0506162102. 1

[DMGB10] DORR M., MARTINETZ T., GEGENFURTNER K. R., BARTH
E.: Variability of eye movements when viewing dynamic natural scenes.
Journal of Vision 10, 10 (2010), 28–28. 1, 2

[GWP07] GOLDSTEIN R. B., WOODS R. L., PELI E.: Where people
look when watching movies: do all viewers look at the same place?
Computers in Biology and Medicine 37, 7 (2007), 957—-964. doi:
10.1016/j.compbiomed.2006.08.018. 2

[JYJ∗21] JAIN S., YARLAGADDA P., JYOTI S., KARTHIK S., SUBRA-
MANIAN R., GANDHI V.: Vinet: Pushing the limits of visual modality
for audio-visual saliency prediction, 2021. arXiv:2012.06170. 3

[KCS∗17] KAY W., CARREIRA J., SIMONYAN K., ZHANG B., HILLIER
C., VIJAYANARASIMHAN S., VIOLA F., GREEN T., BACK T., NATSEV
P., SULEYMAN M., ZISSERMAN A.: The kinetics human action video
dataset, 2017. arXiv:1705.06950. 4

[LBR11] LE MEUR O., BACCINO T., ROUMY A.: Prediction of the
inter-observer visual congruency (iovc) and application to image rank-
ing. In Proceedings of the 19th ACM International Conference on Multi-
media (2011), p. 373–382. doi:10.1145/2072298.2072347. 1,
2

[LCL∗17] LE MEUR O., COUTROT A., LIU Z., RÄMÄ P., LE ROCH
A., HELO A.: Visual attention saccadic models learn to emulate gaze

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/3127588
https://doi.org/10.1109/ICIP.2019.8803596
https://doi.org/10.1073/pnas.0506162102
https://doi.org/10.1073/pnas.0506162102
https://doi.org/10.1016/j.compbiomed.2006.08.018
https://doi.org/10.1016/j.compbiomed.2006.08.018
http://arxiv.org/abs/2012.06170
http://arxiv.org/abs/1705.06950
https://doi.org/10.1145/2072298.2072347


A. Bruckert & M. Christie / High-level cinematic knowledge to predict inter-observer visual congruency

patterns from childhood to adulthood. IEEE Transactions on Image
Processing 26, 10 (2017), 4777–4789. doi:10.1109/TIP.2017.
2722238. 1

[MSHH11] MITAL P. K., SMITH T. J., HILL R. L., HENDERSON J. M.:
Clustering of gaze during dynamic scene viewing is predicted by mo-
tion. Cognitive Computation 3, 1 (2011), 5––24. doi:10.1007/
s12559-010-9074-z. 1, 2, 3, 4

[PIIK05] PETERS R. J., IYER A., ITTI L., KOCH C.: Components of
bottom-up gaze allocation in natural images. Vision research 45, 18
(2005), 2397–2416. 2

[RB16] RAHMAN S., BRUCE N. D. B.: Factors underlying inter-
observer agreement in gaze patterns: Predictive modelling and analysis.
In Proceedings of the Ninth Biennial ACM Symposium on Eye Track-
ing Research & Applications (2016), ETRA ’16, p. 155–162. doi:
10.1145/2857491.2857495. 1, 3, 4

[RCB04] RAJASHEKAR U., CORMACK L. K., BOVIK A. C.: Point-
of-gaze analysis reveals visual search strategies. In Human Vision and
Electronic Imaging IX (2004), vol. 5292, SPIE, pp. 296 – 306. doi:
10.1117/12.537118. 2

[RPH14] RAHMAN A., PELLERIN D., HOUZET D.: Influence of num-
ber, location and size of faces on gaze in video. Journal of Eye Movement
Research 7, 2 (2014), 891—-901. doi:10.16910/jemr.7.2.5. 2

[SKK∗08] SAWAHATA Y., KHOSLA R., KOMINE K., HIRUMA N., ITOU
T., WATANABE S., SUZUKI Y., HARA Y., ISSIKI N.: Determining com-
prehension and quality of tv programs using eye-gaze tracking. Pattern
Recognition 41, 5 (2008), 1610–1626. doi:10.1016/j.patcog.
2007.10.010. 2

[SM13] SMITH T. J., MITAL P. K.: Attentional synchrony and the in-
fluence of viewing task on gaze behavior in static and dynamic scenes.
Journal of Vision 13, 8 (2013), 16–16. doi:10.1167/13.8.16. 1,
2, 3

[TCOH06] TORRALBA A., CASTELHANO M. S., OLIVA A., HENDER-
SON J. M.: Contextual guidance of eye movements and attention in real-
world scenes: the role of global features in object search. Psychological
Review 113 (2006), 766–786. 2

[WSX∗] WANG W., SHEN J., XIE J., CHENG M.-M., LING H., BORJI
A.: Revisiting video saliency prediction in the deep learning era.
https://mmcheng.net/videosal/. 4

[WSX∗19] WANG W., SHEN J., XIE J., CHENG M.-M., LING H.,
BORJI A.: Revisiting video saliency prediction in the deep learning era.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2019).
doi:10.1109/TPAMI.2019.2924417. 5

[XSH∗18] XIE S., SUN C., HUANG J., TU Z., MURPHY K.: Rethink-
ing spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In ECCV 2018 (2018), pp. 318–335. doi:10.1007/
978-3-030-01267-0_19. 3, 4

[YLZ∗21] YUE J., LU Q., ZHU D., MIN X., ZHANG X.-P., ZHAI
G.: Inter-observer visual congruency in video-viewing. In 2021 In-
ternational Conference on Visual Communications and Image Process-
ing (VCIP) (2021), pp. 1–5. doi:10.1109/VCIP53242.2021.
9675428. 1

[ZPB07] ZACH C., POCK T., BISCHOF H.: A duality based approach for
realtime tv-l1 optical flow. In Pattern Recognition (2007), pp. 214–223.
doi:978-3-540-74936-3. 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1109/TIP.2017.2722238
https://doi.org/10.1109/TIP.2017.2722238
https://doi.org/10.1007/s12559-010-9074-z
https://doi.org/10.1007/s12559-010-9074-z
https://doi.org/10.1145/2857491.2857495
https://doi.org/10.1145/2857491.2857495
https://doi.org/10.1117/12.537118
https://doi.org/10.1117/12.537118
https://doi.org/10.16910/jemr.7.2.5
https://doi.org/10.1016/j.patcog.2007.10.010
https://doi.org/10.1016/j.patcog.2007.10.010
https://doi.org/10.1167/13.8.16
https://doi.org/10.1109/TPAMI.2019.2924417
https://doi.org/10.1007/978-3-030-01267-0_19
https://doi.org/10.1007/978-3-030-01267-0_19
https://doi.org/10.1109/VCIP53242.2021.9675428
https://doi.org/10.1109/VCIP53242.2021.9675428
https://doi.org/978-3-540-74936-3

