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1 The class of delay systems YALTAPy can handle
YALTAPy is a Python Toolbox dedicated to the stability analysis of (fractional) delay sys-
tems given by their transfer function.

YALTAPy considers the class of systems with transfer function of the type

G(s) =
t(s) +

N ′∑
κ=1

tκ(s)e−κsτ

p(s) +
N∑

k=1
qk(s)e−ksτ

= n(s)
d(s) , (1)

where
• τ > 0 is the nominal delay,

• t, p, qk for all k ∈ NN , and tκ for all κ ∈ NN ′ are real polynomials in sα for 0 < α ≤ 1
which satisfy

◦ deg p ≥ deg t,
◦ deg p ≥ deg tκ for all κ ∈ NN ′ ,
◦ deg p ≥ deg qk for all k ∈ NN .

Here, the degree is interpreted as the degree in sα.
If deg p = deg qk for at least one k ∈ NN , G defines a neutral time-delay system, otherwise

defines a retarded system [2].
We write z = e−sτ and suppose that for each k

qk(s)
p(s) = αk + O(s−α) as |s| → ∞. (2)

The coefficient of the highest degree term of p(s) +
N∑

k=1
qk(s)e−ksτ can then be written as a

multiple of the following polynomial in z

c̃d(z) = 1 +
N∑

i=1
αiz

i. (3)

Hypothesis (H1). The roots of c̃d are of multiplicity one.

Hypothesis (H2). The polynomials p(s) and qk(s) satisfy

p(0) +
N∑

k=1
qk(0) ̸= 0.

Hypothesis (H3). In order to avoid the possibility of an infinite number of zero cancella-
tions between the numerator and denominator of G, we suppose that the numerator of G
satisfies either

a) deg t(s) > deg tk(s); or
b) deg tk(s) = deg t(s) for at least one k and the polynomial c̃n defined as in (3) relatively

to the quasi-polynomial n(s) has no root of modulus less than or equal to one, and no
common root of modulus strictly greater than one with c̃d.
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2 The functionalities of YALTAPy
The questions YALTAPy can answer are:

• For neutral systems:

◦ Find the position of asymptotic axes.
◦ If the imaginary axis is an asymptotic axis, find if the asymptotic poles of the

chain are to the left or to the right of the imaginary axis.

• In the case of retarded systems or of neutral systems with asymptotic axes in {Re s <
0}, find:

◦ For a given τ , the number and the position of unstable poles.
◦ For which values of τ the system is stable;
◦ For a set of values of the delay, the position of unstable poles (root locus).
◦ The coprime factors (N, D) of G as well as an approximation (Nn, Dn) in H∞-

norm

YALTAPy (as YALTA) is based on [1, 3–8].
YALTAPy contains four main functions for the analysis of (1), which are described in

Sections 3–6.

3 thread_analysis
Launches the analysis of a SISO delay system given by its transfer function G as in (1). The
delay system must be of retarded type or neutral type, but in the latter case some outputs
are available only for neutral systems with a finite number of poles in {Re(s) > −a} for
some a > 0.

3.1 Syntax
res = thread_analysis(poly_mat, delay_vect, alpha, tau)

3.2 Inputs
• poly_mat: the quasi-polynomial in the denominator of (1), represented as the (N +

1) × (n + 1) matrix of its coefficients
pn pn−1 · · · p0
q1,n q1,n−1 · · · q1,0

... ... . . . ...
qN,n qN,n−1 · · · qN,0


where p(s) = pn(sα)n + pn−1(sα)n−1 + · · · + p0 and qk(s) = qk,n(sα)n + qk,n−1(sα)n−1 +
· · · + qk,0 for k ∈ {1, . . . , N}. Thanks to the argument delay_vect below, rows which
are identically zero can be omitted, and so poly_mat can have less than N + 1 rows.
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• delay_vect: the delay vector, which is a vector of values of k for which qk is not null.
Its length should be equal to the number of rows of poly_mat minus one, and the delay
corresponding to the row poly_mat[i+1, :] is delay_vect[i] * tau.

• alpha: a number in the interval (0, 1] describing the fractional power α in (1).

• tau: the value of the nominal delay τ .

3.3 Output
An OrderedDict containing the following fields:

• Type

• AsympStability

• RootsNoDelay

• RootsChain

• CrossingTable

• ImaginaryRoots

3.3.1 Type

This output is a string giving the type of the system [2]: retarded, neutral, or advanced (in
case the user was wrong in defining the system).

3.3.2 AsympStability

The AsympStability is a string that describes one of the following situations:

• Infinite number of unstable poles.

• There is no unstable pole.

• There are d unstable poles, 1 ≤ d < ∞.

• Impossible to conclude, if YALTAPy cannot determine if a chain of poles clustering
the imaginary axis is to the left or to the right of the axis (see [3]).

3.3.3 RootsNoDelay

An array of roots of the system with no delay, i.e., the roots of p(s) +
N∑

k=0
q(s).

3.3.4 RootsChain

For neutral systems: An array of abscissa of the asymptotes of the root chains.
For retarded systems: a string stating that roots chains only computed for neutral systems.
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3.3.5 CrossingTable

This array describes the points of crossing of the imaginary axis. The first column gives the
first value of the delay for which a specific zero crosses the axis. The third column gives the
frequency ω of crossing of a zero. The second column is 2π

ω
. The fourth column gives the

crossing direction: −1 is from right to left and 1 from left to right.

3.3.6 ImaginaryRoots

The set of all the imaginary roots for a delay between zero and the delay τ given in input.
The first column is the delay value, the second column the position on the imaginary axis
and the third column gives the direction as in the CrossingTable output.

4 thread_stability_windows
Launches the analysis of a SISO delay system given by its transfer function G as in (1).
The delay system must be of retarded type or neutral type with a finite number of poles in
{Re(s) > −a} for some a > 0. This function can be used if one only wants to have a graph
of the stability windows for a bounded set of values of the delay.

4.1 Syntax
res = thread_stability_windows(poly_mat,delay_vect,alpha,tau,tmaxsw,tminsw,\

plot)
res = thread_stability_windows(poly_mat,delay_vect,alpha,tau,tmaxsw,tminsw)
res = thread_stability_windows(poly_mat,delay_vect,alpha,tau,tmaxsw)
res = thread_stability_windows(poly_mat,delay_vect,alpha,tau)

4.2 Inputs
The inputs poly_mat, delay_vect, alpha, and tau have the same meaning as those for the
function thread_analysis, please refer to Section 3.2 for more details. The other inputs
are:

• tmaxsw: the maximum delay for the stability window (default: τ).

• tminsw: the minimum delay for the stability window (default: 0).

• plot: a boolean variable determining if a graph is traced (True) or not (False) (default:
True).

4.3 Output
An OrderedDict containing the following fields:

• Type

• RootsNoDelay
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• RootsChain

• CrossingTable

• StabilityWindows

• NbUnstablePoles

The fields Type, RootsNoDelay, RootsChain, and CrossingTable have the same meaning
as those from the function thread_analysis, please refer to Sections 3.3.1, 3.3.3, 3.3.4, 3.3.5
for more details on those outputs. The other fields are described below.

4.3.1 StabilityWindows

An array whose first row gives the values of delay where the stability changes, i.e., from
stability to instability or vice-versa, including the minimum and maximum delays. Its second
row indicates the stability of delay intervals, with 1 representing stability and 0 representing
instability. The i-th entry of the second row corresponds to the delay interval from i-th to
(i + 1)-th entries of the first row.

4.3.2 NbUnstablePoles

This array is similar to StabilityWindows, except that the first row contains the delays where
the number of unstable poles change and the second row gives the number of unstable poles
in delay intervals, following the same convention as StabilityWindows (i.e., the i-th entry of
the second row corresponds to the delay interval from i-th to (i + 1)-th entries of the first
row).

4.4 Display
If plot is true, displays two graphs, one for the stability windows and another for the numbers
of unstable poles. See Figure 4.1 for an example of such graphs.
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Figure 4.1: Example of graph displayed by the function thread_stability_windows
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5 thread_root_locus
The function computes the root locus of a SISO delayed system given by its transfer function
G as in (1). The delay system must be of retarded type or neutral type with a finite number
of poles in {Re(s) > −a} for some a > 0.

5.1 Syntax
res = thread_root_locus(poly_mat, delay_vect, alpha, tau, plot, delta_tau)
res = thread_root_locus(poly_mat, delay_vect, alpha, tau, plot)
res = thread_root_locus(poly_mat, delay_vect, alpha, tau)

5.2 Inputs
The inputs poly_mat, delay_vect, alpha, and tau have the same meaning as those for the
function thread_analysis, please refer to Section 3.2 for more details. The other inputs
are:

• plot: a boolean variable determining if a graph is traced (True) or not (False) (default:
True).

• delta_tau: precision of integration procedure for computing root locus (default: 10−4).

5.3 Output
An OrderedDict containing the following fields:

• Type

• RootsNoDelay

• CrossingTable

• ImaginaryRoots

• UnstablePoles

• PolesError

• RootLocus

The fields Type, RootsNoDelay, CrossingTable, and Imaginary Roots have the same
meaning as those from the function thread_analysis, please refer to Sections 3.3.1, 3.3.3,
3.3.5, 3.3.6 for more details on those outputs. The other fields are described below.

5.3.1 UnstablePoles

An array containing all the unstable poles at the delay value given in input (nominal delay).

5.3.2 PolesError

An array containing the estimated error of evaluation of each unstable pole.
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5.3.3 RootLocus

This list of arrays contains branches of the displayed root locus. Those branches correspond
to roots starting from unstable poles of delay free system as well as roots crossing the
imaginary axis from left to right. Each array of the list represents a branch, as has three
rows containing, respectively, the real and imaginary parts of the roots and the corresponding
values of the delay.

5.4 Display
If plot is true, displays the graph of the root locus. See Figure 5.1 for an example of such
a graph.
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Figure 5.1: Example of graph displayed by the function thread_root_locus

6 compute_pade
Computes the Padé-2 approximation (see [7,8]) of a non-fractional SISO delay system with
transfer function G of the form

C(s) =
p(s) +

N∑
k=1

qk(s)e−kτs

(s + 1)δ
, (4)

where p, q1, . . . , qN are polynomials in s, the degree of p is n, and δ ≥ n + 1.
There are two modes for computing the Padé approximation: “ORDER” and “NORM”,

according to whether, respectively, the order of the approximation is fixed, or a maximum
value of the H∞ norm between C(s) and its Padé approximation is provided.
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Note: To get an approximation of G(s) defined as in (1) and having a finite number of

unstable poles, write G(s) =
n(s)

(s+1)n+1

d(s)
(s+1)n+1

= N(s)
D(s) . If N and D do not have common unstable

zeros (this can be verified with thread_root_locus) this factorization (N, D) is indeed a
coprime factorization of G. Let Nk(s) and Dk(s) be respectively Padé-2 approximations of
N(s) and D(s). Then an approximation of G(s) is given by Gk(s) = Nk(s)

Dk(s) .

6.1 Syntax
res = compute_pade(poly_mat, delta, tau, delay_vect, mod_arg, mode)

6.2 Inputs
The inputs poly_mat, delay_vect, and tau have the same meaning as those for the function
thread_analysis, please refer to Section 3.2 for more details. The other inputs are:

• delta: the value of δ in (4), should be at least n + 1.

• mode: one of the strings “ORDER” or “NORM”, defining the mode of computation
(default: “ORDER”).

• mod_arg: if mode is “ORDER”, mode_arg should be the order of the approximation.
If mode is “NORM”, mode_arg should be the maximum desired value of the H∞ norm
between C(s) and its Padé approximation.

6.3 Output
An object containing the following attributes:

• num_approx: vector of coefficients of the numerator of the transfer function of the
approximation.

• den_approx: vector of coefficients of the denominator of the transfer function of the
approximation.

• error_norm: the H∞ norm of the difference between C and its approximation.

• pade_order: the order of the approximation.

• roots: the roots of the approximation.

• roots_error: an array of differences between the computed roots of C (by thread_
root_locus) and the roots of the approximation.
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7 Example
We consider in example that the following imports have been done in Python:

import numpy as np
import yaltapy as yp

Consider (1) with denominator d(s) given by

d(s) = s3 + 3s2 + 2s − 1
+ e−τs

(
3s2 − 4s + 2

)
+ e−2τs

(
0.5s3 + 0.7s2 + 1.2s − 0.8

)
+ e−3τs

(
0.5s3 + 1.34s2 − 0.7s + 1.9

)
+ e−6τs (3.4s − 1.6) ,

(5)

with a nominal value τ = 2. This quasi-polynomial can be represented in YALTAPy through
the inputs

poly_mat = np.array([[1, 3, 2, -1],
[0, 3, -4, 2],
[0.5, 0.7, 1.2, -0.8],
[0.5, 1.34, -0.7, 1.9],
[0, 0, 3.4, -1.6]])

delay_vect = np.array([1, 2, 3, 6])
alpha = 1
tau = 2

7.1 thread_analysis
Let us run thread_analysis through the command

res = yp.thread_analysis(poly_mat, delay_vect, alpha, tau)

Printing the outputs of thread_analysis, one gets the following:

>>> print(res["Type"])
Neutral
>>> print(res["AsympStability"])
There is (are) 4 unstable pole(s) in right half-plane
>>> print(res["RootsNoDelay"])
[-3.78654811+0.j -0.11672594+0.22890664j -0.11672594-0.22890664j]
>>> print(res["RootsChain"])
[-0.04127457 -0.26402445]
>>> print(res["CrossingTable"])
[[ 0.38675487 10.21442933 0.61512837 1. ]
[ 0.9351039 1.86983146 3.36029499 1. ]
[ 2.50570977 3.66105881 1.71622081 1. ]
[ 3.04607105 5.08619117 1.23534195 -1. ]
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[ 3.83421262 16.11501189 0.38989641 1. ]
[ 4.93674455 5.74886883 1.09294289 1. ]
[29.11158931 29.50880359 0.21292579 -1. ]]

>>> print(res["ImaginaryRoots"])
[[ 0.38675487 0.61512837 1. ]
[ 0.38675487 -0.61512837 1. ]
[ 0.9351039 3.36029499 1. ]
[ 0.9351039 -3.36029499 1. ]]

Hence (5) represents the denominator of a system of neutral type, with 4 unstable poles in
the right half-plane. If τ = 0, (5) reduces to a polynomial of degree 3, whose 3 roots were
computed by YALTAPy and, in particular, have all negative real part. For the nominal
value τ = 2, YALTAPy has identified two root chains, whose real parts are asymptotic to
−0.04127457 and −0.26402445.

As for the crossing table, its first row says that, for a delay τ = 0.38675487, a root
crosses from the left to the right (the fourth column is 1) at ±jω = ±0.61512837j, and
2π
ω

= 10.21442933. The other rows provide the other crossings.
The first two rows of the array ImaginaryRoots say that, for a delay τ = 0.38675487, two

imaginary roots are present, at the values ±j0.61512837 and, as the delay increases, they
cross from the left to the right (value 1 in the third column). Note that ImaginaryRoots
goes from 0 until the nominal delay τ = 2.

7.2 thread_stability_windows
Let us now run thread_stability_windows through the command

res = yp.thread_stability_windows(poly_mat, delay_vect, alpha, tau)

Note that this uses the default values for tmaxsw, tminsw, and plot. After running this
command, we get the plot represented in Figure 7.1.

Figure 7.1 shows that the system is stable for τ < 0.387, and becomes unstable for
τ > 0.387. There are no unstable poles for τ < 0.387, a first pair of unstable poles appear at
τ = 0.387, and another pair appears at τ = 0.935. Note that these conclusions could have
been also obtained using the non-graphic outputs of the function thread_analysis shown
in Section 7.1.

Printing the outputs of thread_stability_windows, one gets the following:

>>> print(res["Type"])
Neutral
>>> print(res["RootsNoDelay"])
[-3.78654811+0.j -0.11672594+0.22890664j -0.11672594-0.22890664j]
>>> print(res["RootsChain"])
[-0.04127457 -0.26402445]
>>> print(res["CrossingTable"])
[[ 0.38675487 10.21442933 0.61512837 1. ]
[ 0.9351039 1.86983146 3.36029499 1. ]
[ 2.50570977 3.66105881 1.71622081 1. ]
[ 3.04607105 5.08619117 1.23534195 -1. ]
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Figure 7.1: Graph displayed by the function thread_stability_windows when running the
example of Section 7

[ 3.83421262 16.11501189 0.38989641 1. ]
[ 4.93674455 5.74886883 1.09294289 1. ]
[29.11158931 29.50880359 0.21292579 -1. ]]

>>> print(res["StabilityWindows"])
[[0. 0.38675487 2. ]
[1. 0. 0. ]]

>>> print(res["NbUnstablePoles"])
[[0. 0.38675487 0.9351039 2. ]
[0. 2. 4. 4. ]]

The first four outputs were already present in the outputs of thread_analysis, and the last
two provide the information used for the plots in Figure 7.1.

7.3 thread_root_locus
Let us now run thread_root_locus through the command

res = yp.thread_root_locus(poly_mat, delay_vect, alpha, tau)

Note that this uses the default values for plot and delta_tau. After running this command,
we get the plot represented in Figure 7.2, which shows the movement of the four roots of (5)
that cross into the right half-plane as τ increases from 0 to 2.

Printing the outputs of thread_root_locus, one gets the following:

>>> print(res["Type"])
Neutral
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Figure 7.2: Graph displayed by the function thread_root_locus when running the example
of Section 7

>>> print(res["RootsNoDelay"])
[-3.78654811+0.j -0.11672594+0.22890664j -0.11672594-0.22890664j]
>>> print(res["CrossingTable"])
[[ 0.38675487 10.21442933 0.61512837 1. ]
[ 0.9351039 1.86983146 3.36029499 1. ]
[ 2.50570977 3.66105881 1.71622081 1. ]
[ 3.04607105 5.08619117 1.23534195 -1. ]
[ 3.83421262 16.11501189 0.38989641 1. ]
[ 4.93674455 5.74886883 1.09294289 1. ]
[29.11158931 29.50880359 0.21292579 -1. ]]

>>> print(res["ImaginaryRoots"])
[[ 0.38675487 0.61512837 1. ]
[ 0.38675487 -0.61512837 1. ]
[ 0.9351039 3.36029499 1. ]
[ 0.9351039 -3.36029499 1. ]]

>>> print(res["UnstablePoles"])
[0.07619789-1.77970107j 0.07619789+1.77970107j 0.23604754+0.2325349j
0.23604754-0.2325349j ]

>>> print(res["PolesError"])
[1.e-11+0.j 1.e-12+0.j 1.e-11+0.j 1.e-11+0.j]
>>> print(res["RootLocus"])

The first four outputs were already present in the outputs of thread_analysis. Unstable-
Poles give the values of the four unstable poles at the nominal value τ = 2, and PolesError
provides the estimated error of this computation. The output RootLocus is not represented
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since it is too long.

7.4 compute_pade
Let us finally compute a Padé approximation of d(s) from (5). Since n = 3, any Padé
approximation should be of order 4 or more. We can compute the Padé approximation by:

res = yp.compute_pade(poly_mat, 4, tau, delay_vect, 4, "ORDER")

The corresponding results can be shown as follows:

>>> print(res.num_approx)
[2.00000000e+00 1.92040000e+02 9.15123333e+03 2.96964980e+05
7.32903870e+06 1.44984579e+08 2.37207030e+09 3.27808542e+10
3.88478826e+11 3.99343801e+12 3.59375116e+13 2.85303832e+14
2.01133000e+15 1.26630760e+16 7.15476853e+16 3.64307073e+17
1.67764881e+18 7.00820054e+18 2.66250502e+19 9.21895467e+19
2.91442571e+20 8.42436140e+20 2.22913849e+21 5.40422384e+21
1.20111492e+22 2.44808428e+22 4.57579845e+22 7.84116785e+22
1.23112476e+23 1.76936357e+23 2.32464527e+23 2.78733178e+23
3.04375031e+23 3.01947675e+23 2.71316157e+23 2.20064462e+23
1.60487122e+23 1.04763783e+23 6.09200819e+22 3.14057500e+22
1.43024001e+22 5.75557863e+21 2.06528567e+21 6.76492585e+20
2.09371143e+20 6.23481927e+19 1.72712265e+19 4.09590121e+18
7.49240883e+17 9.32803382e+16 6.44577697e+15 1.40737488e+14]

>>> print(res.den_approx)
[1.00000000e+00 1.16000000e+02 6.58466667e+03 2.43529333e+05
6.59350278e+06 1.39239870e+08 2.38655292e+09 3.41158404e+10
4.14843449e+11 4.35539933e+12 3.99422730e+13 3.22943875e+14
2.31946517e+15 1.48908781e+16 8.58979764e+16 4.47175100e+17
2.10870426e+18 9.03581478e+18 3.52776119e+19 1.25777567e+20
4.10316487e+20 1.22673632e+21 3.36576102e+21 8.48374261e+21
1.96622449e+22 4.19268258e+22 8.22891178e+22 1.48686371e+23
2.47328439e+23 3.78664683e+23 5.33362280e+23 6.90694756e+23
8.21580848e+23 8.96611602e+23 8.96421661e+23 8.19593068e+23
6.83797741e+23 5.19258874e+23 3.57798233e+23 2.22900045e+23
1.25001984e+23 6.27776182e+22 2.80580459e+22 1.10756022e+22
3.82520017e+21 1.14234003e+21 2.90544670e+20 6.16882548e+19
1.06357971e+19 1.43026818e+18 1.40714032e+17 9.00719925e+15
2.81474977e+14]

>>> print(res.error_norm)
0.27800678706844917
>>> print(res.pade_order)
4
>>> print(res.roots)
[0.23607262+0.23247355j 0.23607262-0.23247355j]
>>> print(res.roots_error)
[6.62831957e-05 6.62846832e-05]
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