Publications

Preprints

  • Zacharie Naulet · Eric Barat. Bayesian nonparametric estimation for Quantum Homodyne Tomography, preprint Oct 2016.  https://128.84.21.199/abs/1610.01895.
  • A. Todeschini, X. Miscouridou, F. CaronExchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities, arXiv:1602.02114, 2016. 

Journals

  • B.P. Hejblum, C. Alkhassim, R. Gottardo, F. Caron, R. Thiebaut. Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. To appear in Annals of Applied Statistics.
  • F. Caron, E.B. Fox. Sparse graphs using exchangeable random measures. Journal of the Royal Statistical Society B (discussion paper), vol. 79, Part 5, pp. 1295-1366, 2017.
  • J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt and P. Abry, “Bayesian selection for the l2-Potts model regularization parameter: 1D piecewise constant signal denoising,” IEEE Trans. Signal Processing, vol. 65, no. 19, pp. 5215-5224, Oct. 2017.
  • C. Elvira, P. Chainais, N. Dobigeon. Bayesian anti-sparse coding, IEEE Transactions on Signal Processing, vol. 65, no 7, pp. 16601672DOI: 10.1109/TSP.2016.2645543, 2017.
  • H.P. Dang, P. Chainais. Indian Buffet Process Dictionary Learning : algorithms and applications to image processing, International Journal of Approximate Reasoning, vol. 83, pp 1-20, 2017.
  • N. Pustelnik, P. Abry, H. Wendt and N. Dobigeon, “Combining local regularity estimation and total variation optimization for scale-free texture segmentation,” IEEE Trans. Computational Imaging, vol. 2, no. 4, pp. 468-479, Dec. 2016.
  • J. Prendes, M. Chabert, A. Giros, F. Pascal and  J.-Y. Tourneret. A Bayesian Nonparametric Model Coupled with a Markov Random Field for Change Detection in Heterogeneous Remote Sensing Images, SIAM Journal on Imaging Sciences, vol. 9, no. 4, pp. 1889-1921, 2016.
  • M. Albughdadi, L. Chaari, J.-Y. Tourneret, F. Forbes and P. Ciuciu. A Bayesin Non-Parametric Hidden
    Markov Random Model for Hemodynamic Brain Parcellation, to appear in Signal Processing, 2017.
  • F. Caron, W. Neiswanger, F. Wood, A. Doucet, M. Davy. Generalized Pólya urn for time-varying Pitman-Yor processes. Journal of Machine Learning Research, vol. 18(27):1-32, 2017.
  • R. Bardenet, A. Doucet, C. Holmes. On Markov chain Monte Carlo methods for tall data, to appear in Journal of Machine Learning Research, 2017.
  • C. Magnant, A. Giremus, E. Grivel, B. Joseph, L. Ratton, Bayesian non-parametric methods for dynamic state-noise covariance matrix estimation: application to target tracking, Volume 127, Octobre 2016, Pages 135–150, Signal Processing Elsevier.
  • T. Imbiriba, JCM Bermudez, C. Richard, J.-Y. Tourneret, “Nonparametric detection of nonlinearly mixed pixels and endmember estimation in hyperspectral images,” IEEE Transactions on Image Processing, 2016, vol. 25, no 3, p. 1136-1151.
  • M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S. McLaughlin, “A survey of stochastic simulation and optimization methods in signal processing,” IEEE Journal of Selected Topics in Signal Processing, 2016, vol. 10, no 2, p. 224-241.
  • H. P. Dang and P. Chainais. Towards dictionaries of optimal size: A bayesian non parametric approach, Journal of Signal Processing Systems, pp. 1–12, 2016. DOI: 10.1007/s11265-016-1154-1
  • I. Nevat, G. W. Peters, F. Septier, and T. Matsui, “Estimation of Spatially Correlated Random Fields in Heterogeneous Wireless Sensor Networks,” IEEE Transactions on Signal Processing, vol. 63, no. 10, pp. 2597-2609, May 2015.
  • J. Prendes, M. Chabert, F. Pascal, A. Giros, J.-Y. Tourneret, A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors, IEEE Trans. on Image Process., 2015.
  • M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S. McLaughlin, A survey of stochastic simulation and optimization methods in signal processing, IEEE Journal of Selected Topics in Signal Processing, vol. PP, no. 99, pp. 1-1, 2015.

International Conferences

  • C. Elvira, P. Chainais and N. Dobigeon, “Bayesian nonparametric subspace estimation,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), New Orleans, USA, 2017, pp. 2247-2251.
  • J. Sodjo, A. Giremus, N. Dobigeon and J.-F. Giovannelli, “A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), New Orleans, USA, March 2017, pp. 1882-1886.
  • H.P. Dang, P. Chainais. Indian Buffet process dictionary learning for image inpaintingIEEE Statistical Signal Processing Workshop (SSP) 2016DOI: 10.1109/SSP.2016.7551729.
  • C. Elvira, P. Chainais, N. Dobigeon. Democratic prior for anti-sparse coding, IEEE Statistical Signal Processing Workshop (SSP) 2016DOI: 10.1109/SSP.2016.7551813.
  • ] J. Sodjo, A. Giremus, F. Caron, J.-F. Giovannelli, N. Dobigeon. Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach, IEEE Workshop on statistical signal processing (SSP 2016), Palma de Mallorca, Majorque (Baléares), juin 2016.
  • A. Giremus, V. Pereira, A Bayesian non parametric time-switching autoregressive model for multipath errors in GPS navigation, Proc. of 9th IEEE Sensor Array and Multichannel signal processing workshop, SAM 2016, Rio de Janeiro, Brésil, Juillet 2016.
  • J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt and P. Abry, “Bayesian-driven criterion to automatically select the regularization parameter in the l1-Potts model,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), New Orleans, USA, March 2017, pp. 3839-3843.
  • R. Bardenet, M.K. Titsias, Inference for determinantal point processes without spectral knowledge, Advances in Neural Information Proccessing Systems, NIPS 2015.
  • H.P. Dang, P. Chainais, “A bayesian non parametric approach to learn dictionaries with adapted numbers of atoms,” Proceedings of IEEE Int. Conf. on Machine Learning for Signal Processing (MLSP) 2015, Boston. Intel Best Paper Award.
  • C. Magnant, A. Giremus, E. Grivel, L. Ratton, B. Joseph, Dirichlet process mixture based Bayesian non parametric method for Markov switching process estimation, Proceedings of the 23th European Signal Processing Conference, EUSIPCO 2015.
  • C. Magnant, A. Giremus, E. Grivel, L. Ratton, B. Joseph, Joint tracking and classification based on kinematic and target extent measurements, Proceedings of Fusion 2015.
  • J. Prendes, M. Chabert, F. Pascal, A. Giros and J.-Y. Tourneret, “Change detection for optical and radar images using a bayesian nonparametric model coupled with a markov random field,” IEEE Proc. of ICASSP 2015.
  • Naulet, Z. ; Barat, E., pr´esentation orale `a la 10th Conference on Bayesian Nonparametrics, juin 2015, Duke, NC, USA. ”Adaptive Bayesian nonparametric regression using mixtures of kernels”.
  • J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt and P. Abry, “Hybrid Bayesian variational scheme to handle parameter selection in total variation signal denoising,” in Proc. European Signal Processing Conf. (EUSIPCO), Libon, Portugal, Sep. 2014, pp. 1716-1720.
  • N. Pustelnik, P. Abry, H. Wendt and N. Dobigeon, “Inverse problem formulation for regularity estimation in images,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Paris, France, Oct. 2014, pp. 6081–6085.
  • Naulet, Z. ; Barat, E., ”Signal stochastic decomposition over continuous dictionaries,” Machine Learning for Signal Processing (MLSP), 2014 IEEE International Workshop on , vol., no., pp.1,6, 21-24, MLSP 2014.
  • N. Jaoua, F. Septier, E. Duflos, and P. Vanheeghe, “State and Impulsive Time-Varying Measurement Noise Density Estimation in Nonlinear Dynamic Systems Using Dirichlet Process Mixtures,” in Proc. IEEE Int. Conf. on Acoustic, Speech and signal Porcessing (ICASSP), pp. 330-334, 2014.

National Conferences

  • J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt and P. Abry, “Sélection du paramètre de régularisation dans le problème l2-Potts,” in Actes du XXVIième Colloque GRETSI, Sept. 2017.
  • C. Elvira, P. Chainais and N. Dobigeon, “Une formulation bayésienne du codage antiparcimonieux,” in Actes du XXVIième Colloque GRETSI, Sept. 2017.
  • H.P. Dang, P. Chainais, “Approche bayésienne non paramétrique dans l’apprentissage du dictionnaire pour adapter le nombre d’atomes,” Proceedings of the French National Conference GRETSI 2015.
Bayesian Nonparametric methods for Signal and Image Processing
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.