Home

hobit_poster_no_background

Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components.

We propose to simulate such experiments by way of a hybrid optical bench that benefits from both spatial augmented reality and tangible interaction. We target a highly interactive system where students will be able to interact in real time with HOBIT to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors).

Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, HOBIT can open new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena.

To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

Publication

David Furio, Stéphanie Fleck, Bruno Bousquet, J.-P. Guillet, Lionel Canioni, Martin Hachet. HOBIT: Hybrid Optical Bench for Innovative Teaching. SIGCHI Conference on Human Factors in Computing Systems (CHI ’17), May 2017, Denver, United States. 2017. Honorable mention award (top 5%)

Teaser video

Comments are closed