(No title)

[1] Filippo Santambrogio.
A Dacorogna-Moser approach to flow decomposition and minimal flow
problems.
submitted to the proceedings of the SMAI conference 2013, October
2013.
http
[2] Jean-David Benamou and Brittany D. Froese.
A viscosity framework for computing Pogorelov solutions of the
Monge-Ampere equation.
July 2014.
http
[3] Jean-David Benamou and Guillaume Carlier.
Augmented Lagrangian methods for transport optimization, Mean-Field
Games and degenerate PDEs.
October 2014.
http
[4] Yann Brenier.
Connections between Optimal Transport, Combinatorial Optimization
and Hydrodynamics.
October 2014.
http
[5] Giuseppe Buttazzo, Guillaume Carlier, and Serena Guarino Lo Bianco.
Optimal regions for congested transport.
2014.
http
[6] Jean-David Benamou, Guillaume Carlier, and Nicolas Bonne.
An Augmented Lagrangian Numerical approach to solving Mean-Fields
Games.
Research report, December 2013.
http
[7] Qi-Rui Li, Filippo Santambrogio, and Xu-Jia Wang.
Regularity in Monge’s mass transfer problem.
Journal de Mathématiques Pures et Appliquées, pages
In Press, Corrected Proof, only online for the moment, 2014.
http
[8] A. Galichon, P. Henry-Labordère, and N. Touzi.
A stochastic control approach to no-arbitrage bounds given marginals,
with an application to lookback options.
Ann. Appl. Probab., 24(1):312-336, 2014.
http
[9] Dylan Possamaï, Guillaume Royer, and Nizar Touzi.
On the robust superhedging of measurable claims.
Electron. Commun. Probab., 18:no. 95, 13, 2013.
http
[10] Xiaolu Tan and Nizar Touzi.
Optimal transportation under controlled stochastic dynamics.
Ann. Probab., 41(5):3201-3240, 2013.
http
[11] Jan Obloj, Peter Spoida, and Nizar Touzi.
Martingale inequalities for the maximum via pathwise arguments, 2014.
arXiv
[12] Pierre Henry-Labordere and Nizar Touzi.
An explicit martingale version of brenier’s theorem, 2013.
arXiv
[13] Xiaolu Tan and Nizar Touzi.
Optimal transportation under controlled dynamics, 2013
arXiv
[14] Yves Achdou, Francisco J. Buera, Jean-Michel Lasry, Pierre-Louis Lions, and
Benjamin Moll.
Partial differential equation models in macroeconomics.
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
372(2028):20130397, 19, 2014.
[15] Yves Achdou, Fabio Camilli, and Lucilla Corrias.
On numerical approximation of the Hamilton-Jacobi-transport
system arising in high frequency approximations.
Discrete Contin. Dyn. Syst. Ser. B, 19(3):629-650, 2014.
http
[16] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta.
Mean field games: convergence of a finite difference method.
SIAM J. Numer. Anal., 51(5):2585-2612, 2013.
http
[17] Jean-David Benamou, Guillaume Carlier, Quentin Mérigot, and Edouard Oudet.
Discretization of functionals involving the Monge-Ampère
operator.
Technical report, July 2014.
20 pages.
http
[18] A. Blanchet and G. Carlier.
Remarks on existence and uniqueness of Cournot-Nash equilibria
in the non-potential case.
Math. Financ. Econ., 8(4):417-433, 2014.
http
[19] Adrien Blanchet and Guillaume Carlier.
From Nash to Cournot-Nash equilibria via the
Monge-Kantorovich problem.
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
372(2028):20130398, 11, 2014.
[20] L. Brasco and G. Carlier.
Congested traffic equilibria and degenerate anisotropic PDEs.
Dyn. Games Appl., 3(4):508-522, 2013.
http
[21] P. Cardaliaguet, G. Carlier, and B. Nazaret.
Geodesics for a class of distances in the space of probability
measures.
Calc. Var. Partial Differential Equations, 48(3-4):395-420,
2013.
http
[22] Giuseppe Buttazzo and Guillaume Carlier.
Optimal spatial pricing strategies with transportation costs.
AMS Series Contemporary Mathematics, 514 (2010), 105-121, 2013.
arXiv
[23] Giuseppe Buttazzo, Guillaume Carlier, and Serena Guarino Lo Bianco.
Optimal regions for congested transport, 2014.
arXiv
[24] Guillaume Carlier, Adam Oberman, and Edouard Oudet.
Numerical methods for matching for teams and wasserstein barycenters,
2014.
arXiv
[25] F. Santambrogio G. De Philippis, A. Mészáros and B. Velichkov.
Bv estimates in optimal transportation and applications.
2014.
[26] Filippo Santambrogio.
Introduction to Optimal Transport Theory, pages 3-21.
London Mathematical Society, 2014.
[27] Filippo Santambrogio.
Models and applications of Optimal Transport in Economics,
Traffic and Urban Planning
, pages 22-40.
London Mathematical Society, 2014.
[28] Claude Martini Luciano Campi, Ismail Laachir.
Change of numeraire in the two-marginals martingale transport
problem.
submitted, 2014.
http
[29] Claude Martini Ismail Laachir.
Optimal transport option bounds for ssvi.
working paper, 2014.
.html
[30] Claude Martini Luciano Campi.
Investigating the extremal martingale measures with pre-specified
marginals.
in peparation, 2014.
[31] Ismail Laachir.
Another example of two-marginals martingale transference plan.
in preparation, 2014.
[32] A. Zhou S. De Marco.
On robust bounds on vix options given marginals.
working paper, 2014.
[33] Sylvain Faure and Bertrand Maury.
Crowd motion from the granular standpoint.
Mathematical Models and Methods in Applied Sciences,
25(03):463-493, 2015.
arXiv
http
[34] Yann Brenier.
A DOUBLE LARGE DEVIATION PRINCIPLE FOR MONGE-AMPERE GRAVITATION.
March 2015.
http
.pdf
[35] Jean-David Benamou, Guillaume Carlier, and Luca Nenna.
A Numerical Method to solve Optimal Transport Problems with Coulomb
Cost.
May 2015.
http
.pdf
[36] Yves Achdou and Mathieu Laurière.
Mean field type control with congestion.
April 2015.
http
.pdf
[37] Bruno Bouchard, Dylan Possamaï, Xiaolu Tan, and Chao Zhou.
A unified approach to a priori estimates for supersolutions of BSDEs
in general filtrations.
July 2015.
http
.pdf
[38] Bruno Bouchard, Dylan Possamaï, and Xiaolu Tan.
A general Doob-Meyer-Mertens decomposition for g-supermartingale
systems.
May 2015.
http
.pdf
[39] Martial Agueh and Guillaume Carlier.
Generalized solutions of a kinetic granular media equation by a
gradient flow approach.
June 2015.
http
.pdf
[40] Roman Andreev.
Wavelet-in-time multigrid-in-space preconditioning of parabolic
evolution equations.
August 2015.
http
.pdf
[41] Bertrand Maury and Anthony Preux.
Pressureless Euler equations with maximal density constraint : a
time-splitting scheme.
October 2015.
http
.pdf
[42] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel
Peyré.
Iterative Bregman Projections for Regularized Transportation
Problems.
SIAM Journal on Scientific Computing, 2(37):A1111-A1138,
2015.
http
.pdf
[43] Yves Achdou and Alessio Porretta.
Convergence of a finite difference scheme to weak solutions of the
system of partial differential equation arising in mean field games.
March 2015.
http
.pdf
[44] Filippo Santambrogio.
DEALING WITH MOMENT MEASURES VIA ENTROPY AND OPTIMAL TRANSPORT.
June 2015.
http
.pdf
[45] Pierre Cardaliaguet, Alpár Richárd Mészáros, and Filippo
Santambrogio.
First order Mean Field Games with density constraints: Pressure
equals Price.
July 2015.
http
.pdf
[46] Filippo Santambrogio and Xu-Jia Wang.
Convexity of the support of the displacement interpolation:
counterexamples.
October 2015.
http
.pdf
[47] Yves Achdou, Salomé Oudet, and Nicoletta Tchou.
Effective transmission conditions for hamilton-jacobi equations
defined on two domains separated by an oscillatory interface.
arXiv preprint arXiv:1506.02998, 2015.
[48] S. Di Marino, A. Gerolin, and L. Nenna.
Optimal Transportation Theory with Repulsive Costs.
ArXiv e-prints, June 2015.
arXiv