The Pamela project aims at developing machine learning theories and algorithms in order to learn local and personalized models from data distributed over networked infrastructures. Our project seeks to provide first answers to modern information systems built by interconnecting many personal devices holding private user data in the search of personalized suggestions and recommendations. More precisely, we will focus on learning in a collaborative way with the help of neighbors in a network. We aim to lay the first blocks of a scientific foundation for these new types of systems, in effect moving from graphs of data to graphs of data and learned models. We argue that this shift is necessary in order to address the new constraints arising from the decentralization of information that is inherent to the emergence of big data. We will in particular focus on the question of learning under communication and privacy constraints. A significant asset of the project is the quality of its industrial partners, Snips and Mediego, who bring in their expertise in privacy protection and distributed computing as well as use cases and datasets. They will contribute to translate this fundamental research effort into concrete outcomes by developing personalized and privacy-aware assistants able to provide contextualized recommendations on small devices and smartphones.

Pamela is a project — number ANR-16-CE23-0016-01 — funded by ANR (2016-2020).An ANR project

Comments are closed.