Lundi 16 juin 2025 – Inria : Buyang Li (Hong Kong Polytechnic University)
Titre: TBD Résumé TBD
Titre: TBD Résumé TBD
Titre: TBD Résumé TBD
Titre: Adjoint-Based Calibration of Nonlinear Stochastic Differential Equation Résumé To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully…
Titre: Global space-time low-complexity numerical methods for the time-dependent Schrödinger equation Résumé The aim of this talk is to present novel global space-time methods for the approximation of the time-dependent Schrödinger equation on low-complexity manifolds. The backbone of the approach is the use of a least-square formulation of the time-dependent…
Titre: Une méthode de frontière immergée basée sur la résolution d’un problème de contrôle optimal Résumé La résolution numérique d’équations aux dérivées partielles dans des domaines dont la géométrie est complexe, non connue a priori ou qui se déforme au cours du temps, pose en général des difficultés liées à…
Titre: A primer on physics-informed machine learning Résumé Physics-informed machine learning combines the expressiveness of data-based approaches with the interpretability of physical models. In this context, we consider a general regression problem where the empirical risk is regularized by a partial differential equation that quantifies the physical inconsistency. Practitioners often…
Titre : A class of parabolic fractional reaction-diffusion systems with control of total mass: Theory and numerics Résumé : In this talk based on [1, 2], we present some new results about global-in-time existence of strong solutions to a class of fractional parabolic reaction–diffusion systems posed in a bounded open…
Titre: Energy consistent time discretisation of port-Hamiltonian systems Résumé Various ordinary and partial differential equations arising from physics can be written as port-Hamiltonian systems. Their Hamiltonian function represents an energy that is conserved or dissipated along solutions. Numerical schemes are energy consistent, if the Hamiltonian is preserved or dissipated also…
Titre: Maillages courbes pour un problème de diffusion avec le Laplacien de surface Résumé Cet exposé porte sur l’analyse numérique d’un problème de diffusion avec une condition au bord impliquant un Laplacien de surface en utilisant la méthode des éléments finis de Lagrange avec un ordre élevé. Afin de définir…
Titre: Photon tunneling heat transfer in particulate system: physical characteristics and homogenization theory Résumé Radiative transfer equation (RTE) is the commonly accepted continuum scale governing equation for radiative heat transfer in particulate system. However, its applicability is questionable for non-random, densely and regularly packed particulate systems, due to dependent scattering…