Research topics:
- HPF: adaptive hierarchical sub-tensor approximations using local HOSVD (Hierarchical Partitioning Format)
- Non-linear model reduction based on Riemannian geometry
- CP-TT: using TT-SVD to greedily construct stable CP tensor approximations.
- SO-TT: greedy approximation of a given tensor as a sum of Tensor Trains.
- An extended Krylov-like method to solve multilinear systems.
- State estimation using Tensor Trains.
Conferences and Seminars:
- Virginie Ehrlacher, Dynamical Adaptive tensor methods for the Vlasov-Poisson system, GAMN 2019, Wien. GAMN2019
- Damiano Lombardi, Adaptive dynamical approximations with tensors, Amiens 2019. Amiens2019
- Damiano Lombardi, A hierarchical adaptive subtensor partitioning for tensor compression, Lions-Magenes days, Paris 2019.
- Damiano Lombardi, A hierarchical adaptive subtensor partitioning for tensor compression, Mortech, Paris 2019.
- Damiano Lombardi, Adaptive tensor methods for scientific computing, Séminaire du Laboratoire Jacques-Louis Lions, Paris, 05-03-2021
- Damiano Lombardi, Adaptive tensor methods for scientific computing, Seminar of Glasgow Centre of Computational Engineering, April-2021