Programme 2016/2017

Programme 2017 :

Lundi 16 janvier, 2017 – Inria Paris
Stanley Durrleman,
Inria, ICM.
Learning digital brain models from multimodal image data
Résumé

Lundi 6 février, 2017 – LJLL
Thomas Wick,
Ecole Polytechnique.
Coupling fluid-structure interaction with phase-field fracture
Résumé

Lundi 20 février, 2017- Inria Paris
Christian Schmeiser,
Université de Vienne.
Bistability of lamellipodial fragments
Résumé

Lundi 6 mars, 2017 – LJLL
Sonia Fliss,
Ensta.
High order transmission conditions for the homogenization of interface problems
Résumé

Lundi 20 mars, 2017 -Inria Paris
Clément Cancès,
 Inria Lille.
Schémas numériques dissipant l’entropie pour des équations paraboliques
Résumé

Lundi 24 avril, 2017 – Inria Paris
Maya de Buhan, CNRS.
Convergent algorithm based on Carleman estimates for the recovery of a coefficient in the wave equation
Résumé

Lundi 15 Mai, 2017 – Inria Paris
Patrick Ciarlet, 
Ensta.
Nuclear core reactor simulations with low-regularity solution
Résumé

Lundi 19 Juin 2017 – Inria Paris
Pierre Kestener, CEA Saclay.
CanoP, a lightweight C++ framework for adaptive mesh refinement applications
Résumé
 

Programme 2016 :

Lundi, 19 septembre 2016- Inria
Daniele BOFFI,
Université de Pavie.
Approximation of fluid-structure interaction problems with Lagrange multiplier
Résumé

Lundi, 3 octobre 2016– LJLL
Ping Lin, Université de Dundee.
A Thermodynamically Consistent Phase-Field Model And Its Energy-Law Preserving Continuous Finite Element Method.
Résumé

Lundi, 17 octobre 2016 – Inria
Ricardo Nochetto, Université du Maryland.
Bilayer Plates: Model Reduction, Discretization and Gradient Flow
Résumé

Lundi, 7 novembre 2016 – LJLL
Stefan VOLKWEIN, Université de Constance.
Proper orthogonal decomposition for constrained optimal control of PDEs
Résumé

Lundi, 21 novembre 2016- Inria
Silke GLAS, Université de Ulm.
Time and Reduced Basis Methods
Résumé

Lundi, 5 décembre 2016- LJLL
Aline Lefebvre-Lepot, CNRS, Ecole Polytechnique.

Simulation numérique suspensions: prise en compte des forces de
lubrification avec correction du champ fluide
Résumé

 


Lundi 20 Mars 2017
Clément Cancès, Inria Lille

Titre: Schémas numériques dissipant l’entropie pour des équations paraboliques Résumé: Il est bien compris depuis maintenant un peu plus de 15 ans que le contrôle de l’entropie et de sa dissipation permet de caractériser le comportement en temps long des solutions d’équations de convection diffusion. Le contrôle de l’entropie joue aussi un…

plus

Lundi 6 mars, 2017
Sonia Fliss, ENSTA

Title:High order transmission conditions for the homogenization of interface problems Abstract: This work is a joint work with Xavier Claeys (UPMC, University Paris 6) and Valentin Vinoles (former PhD student, now at EPFL). Classical homogenization theory takes into account poorly interfaces (or boundaries). Indeed, it is well known that the…

plus

Lundi 20 Fevrier 2017
Christian Schmeiser, Université de Vienne

Titre: Bistability of lamellipodial fragments Résumé: In experiments bistability of lamellipodial fragments has been observed with perturbation induced switching between a nonpolarized-nonmoving and a polarized-moving state. The Filament Based Lamellipodium Model, a two-dimensional, anisotropic, two-phase model of the lamellipodium is used to explain the bistability as a phenomenon induced by actin-myosin interaction. The bistability is obtained…

plus

Lundi 6 Fevrier 2017
Thomas Wick, Ecole Polytechnique

Coupling fluid-structure interaction with phase-field fracture Résumé: In this presentation, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based…

plus

Lundi 16 janvier 2017
Stanley Durrleman, Inria

Learning digital brain models from multimodal image data We will present algorithms and methods to automatically build digital brain models from sets of observations. These observations may take the form of series of medical images or 3D geometrical objects extracted from these images, such as surface or curve meshes. One…

plus

Lundi 21 November 2016
Silke Glas, Université de Ulm

Time and Reduced Basis Methods Abstract: Parametrized parabolic problems often occur in industrial or financial applications, e.g. as pricing of options on the stock market. If we want to calibrate an option pricing model, we need several evaluations for different parameters. Fine discretizations, that are needed for these problems, resolve…

plus

Lundi 7 Novembre 2016
Stefan Volkwein, Univ. de Constance

Proper orthogonal decomposition for constrained optima control of PDEs Abstract: In this work optimal control problem for parabolic evolution problems with inequality constraints are considered. For its numerical solution a reduced-order approach based on proper orthogonal decomposition (POD) is applied. POD is a powerful technique for model reduction of non-linear…

plus

Lundi 17 Octobre 2016
Ricardo Nochetto, University of Maryland

Bilayer Plates: Model Reduction, Discretization and Gradient Flow The bending of bilayer plates is a mechanism which allows for large deformations via small externally induced lattice mismatches of the underlying materials. Its mathematical modeling, discussed in this talk, consists of a nonlinear fourth order problem with a pointwise isometry constraint.…

plus

Lundi 3 octobre 2016
Ping Lin Department of Mathematics, University of Dundee

A Thermodynamically Consistent Phase-Field Model And Its Energy-Law Preserving Continuous Finite Element Method. Abstract: We develop a phase-field model for the binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each fluid component while maintaining thermodynamic consistency. The governing equations…

plus