Paper 54 Details


Effects of Cooperative and Competitive Coevolution on Complexity in a Linguistic Prediction Game


Nick Moran, Jordan Pollack


Date: Tuesday 5 Sept
Talk Time: TBA
Session: Social dynamics 10:30


Evolution, Coevolution, Complexity, Automata, Iterated Games


We propose a linguistic prediction game with competitive and cooperative variants, and a model of game players based on finite state automata. We present a complexity metric for these automata, and study the coevolutionary dynamics of complexity growth in a variety of multi-species simulations. We present quantitative results using this complexity metric and analyze the causes of varying rates of complexity growth across different types of interactions. We find that while both purely competitive and purely cooperative coevolution are able to drive complexity growth above the rate of genetic drift, mixed systems with both competitive and cooperative interactions achieve significantly higher evolved complexity.

Comments are closed.